1Master of Chemistry Study Program, Faculty of Science and Informatics, Jenderal Achmad Yani University, Cimahi, Indonesia
2Center for Applied Nuclear Science and Technology (PSTNT)-Nuclear Energy Research Organization (ORTN)-National Innovation Research Agency (BRIN), Bandung, Indonesia, Indonesia
BibTex Citation Data :
@article{JKSA58050, author = {Arie Hardian and Rosalinawati Dewi and Jasmansyah Jasmansyah and Dani Syarif and Anceu Murniati}, title = {Synthesis and Characterization of Fe-doped Hydroxyapatite/ZnO Nanocomposites Using the Coprecipitation Method from Processed Limestone}, journal = {Jurnal Kimia Sains dan Aplikasi}, volume = {26}, number = {10}, year = {2023}, keywords = {limestone; iron; doped hydroxyapatite; nanocomposites; zinc oxide}, abstract = {Hydroxyapatite (HAp) is the main inorganic component that forms teeth and bones. The abundant limestone reservoir in Indonesia can be utilized as a natural resource for the green synthesis of hydroxyapatite. The objective of synthesizing Fe-doped hydroxyapatite/ZnO nanocomposites is to enhance the magnetic properties of hydroxyapatite, facilitating its utilization as a biomaterial in drug delivery systems. This application proves valuable in regulating the timing and location of active substance decay in pharmaceuticals. The coprecipitation method was employed to synthesize Fe-doped hydroxyapatite (Fe-HAp) at varying concentrations of 0%, 2.5%, 5%, and 10% mol. Subsequently, Fe- HAp/ZnO nanocomposites were crafted with a weight ratio 4:1 through straightforward homogenization between nano Fe-HAp and nano ZnO, utilizing ethanol as a solvent. The analytical tools employed for characterization included X-ray fluorescence (XRF), X-ray diffraction (XRD), and Vibrating Sample Magnetometer (VSM). XRF analysis revealed that the Ca/P ratio in the Fe- HAp/ZnO nanocomposite decreased with increasing Fe dopant concentration, while the weight percentage of ZnO remained consistent across all nanocomposites. The XRD results demonstrated the presence of typical diffraction patterns of HAp and ZnO in the Fe-HAp/ZnO nanocomposite. However, secondary phases such as β-TCP, CaCO 3 , and Fe 2 O 3 were observed in the Fe-HAp sample. The crystallite size of the Fe-HAp/ZnO nanocomposite generated in this study ranged from 29 to 38 nm. VSM characterization outcomes indicated that the substitution of Fe(III) can modify the diamagnetic properties of hydroxyapatite, rendering it ferromagnetic or superparamagnetic, depending on the dopant concentration employed.}, issn = {2597-9914}, pages = {404--410} doi = {10.14710/jksa.26.10.404-410}, url = {https://ejournal.undip.ac.id/index.php/ksa/article/view/58050} }
Refworks Citation Data :
Article Metrics:
Last update:
Synthesis and Characterization of Fluorapatite-Copper(II) Oxide with Sol-Gel Method as an Antibacterial Biomaterial
Last update: 2024-11-20 12:46:00
As an article writer, the author has the right to use their articles for various purposes, including use by institutions that employ authors or institutions that provide funding for research. Author rights are granted without special permission.
Author who publishes a paper at JKSA has the broad right to use their work for teaching and scientific purposes without the need to ask permission, including: used for (i) teaching in the author's class or institution, (ii) presentation at meetings or conferences and distributing copies to participants ; (iii) training conducted by the author or author's institution; (iv) distribution to colleagues for research use; (v) use in the compilation of subsequent authors' works; (vi) inclusion in a thesis or dissertation; (vi) reuse of part of the article in another work (with citation); (vii) preparation of derivative works (with citation); (viii) voluntary posting on open websites operated by authors or author institutions for scientific purposes (follow the CC BY-SA License).
Authors and readers can copy and redistribute material in any media or format, and mix, modify, and build material for any purpose but they must provide appropriate credit (provide article citation or content), providing links to the license, and indicate if there are changes.
The authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Jurnal Kimia Sains dan Aplikasi (JKSA). Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations.
Reproduce any part of this journal, its storage in the database or its transmission by all forms or media is permitted does not need for written permission from JKSA. However, it should be cited as an honor in academic manners
JKSA and the Chemistry Department of Diponegoro University and the Editor make every effort to ensure that there are no data, opinions, or false or misleading statements published in JKSA. However, the content of the article is the sole and exclusive responsibility of each author.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form - Indonesian] [Copyright Transfer Form - English]. The copyright form should be signed originally and send to the Editor in the form of printed letters, scanned documents sent via email or fax.
Adi Darmawan, Ph.D (Editor in Chief)
Editor in chief of Jurnal Kimia Sains dan Aplikasi (JKSA)
Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University
Visitor: View My Stats
Jurnal Kimia Sains dan Aplikasi is indexed in:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.