skip to main content

Investigating Phenol Transport Using Copoly(Eugenol-DVB) 8% as a Carrier with the Supported Liquid Membrane Method

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Jl. Prof. Dr. Ir. Sumantri Brojonegoro, Gedong Meneng, Kec. Rajabasa, Kota Bandar Lampung, Lampung 35141, Indonesia

Received: 7 Sep 2023; Revised: 23 Nov 2023; Accepted: 1 Dec 2023; Published: 23 Dec 2023.
Open Access Copyright 2023 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

The presence of phenol in water has adverse effects on human health and the environment, as it is a toxic contaminant commonly found in industrial waste. To address this issue, studies were conducted to investigate the transport of phenol using copoly(eugenol-divinyl benzene) (Co-EDVB) 8% as a carrier on polytetrafluoroethylene (PTFE) membranes, employing the Supported Liquid Membrane (SLM) method. Various parameters affecting phenol transport were examined, including the pH of the source phase, concentration in the receiver phase, immersion time, carrier concentration, and transport duration. Co-EDVB 8% was synthesized through copolymerizing eugenol and 8% divinyl benzene, facilitated by the BF3O(C2H5) catalyst. The synthesized polymer was characterized using FTIR. The phenol concentration post-transportation was determined spectrophotometrically using a 4-aminoantipyrine reagent, with absorbance measured at λ = 456 nm. The findings indicate that under optimal conditions—source phase pH of 5.5, NaOH concentration of 0.1 M, immersion time of 1 hour, carrier concentration of 0.01 M, and a transportation time of 24 hours—the Co-EDVB carrier in the PTFE membrane efficiently transported phenol. Even after 24 hours of the phenol transport process, the percentage of membrane liquid loss (%ML Loss) did not significantly decrease, remaining at 8.35%. This was corroborated by Scanning Electron Microscope (SEM) results and FTIR characterization. In conclusion, the PTFE membrane incorporating 8% Co-EDVB as a carrier exhibits effective phenol transport, achieving a transportation efficiency of 92.10%.

Fulltext View|Download
Keywords: Phenol; Copoly(eugenol-DVB); SLM

Article Metrics:

  1. Slamet Slamet, R. Arbianti, Daryanto Daryanto, Simultaneous Treatment of Organic (Phenol) and Heavy Metal (Cr6+ or Pt4+) Wastes over TiO2, ZnO-TiO2 and CdS-TiO2 Photocatalysts, Makara Journal of Technology, 9, 2, (2005), 66-71 https://doi.org/10.7454/mst.v9i2.363
  2. Mamay Maslahat, Mediagmi Paramitha, Supriyono Eko Wardoyo, Modification of palm oil empty fruit bunches biosorbent using egg shells for phenol sorption, Journal of Lignocellulose Technology, 1, 1, (2017), 43-50
  3. Amardi Suprasetyo, Pirim Setiarso, Penentuan Kadar Fenol pada Air Sungai Secara Cyclic Stripping Voltammetry dengan Menggunakan Elektroda Pasta Karbon Termodifikasi Zeolit, Prosiding Seminar Kimia dan Pembelajarannya, Surabaya, 2016
  4. George Tchobanoglous, Franklin L. Burton, H. David Stensel, Wastewater engineering: treatment and reuse, Metcalf & Eddy Inc., New York, 2004,
  5. Sri Dian Meita Sari, Wayan Budiarsa Suyasa, I Gede Mahardika, Pemanfaatan Biosistem Tanaman Untuk Menurunkan Kadar Fenol, Amonia, Ion Klorida, dan COD dari Proses Biodegradasi Air Limbah yang Mengandung Rhodamin B, ECOTROPHIC : Jurnal Ilmu Lingkungan (Journal of Environmental Science), 10, 1, (2016), 1-8 https://doi.org/10.24843/EJES.2016.v10.i01.p01
  6. Atikah Atikah, Penurunan Kadar Fenol dalam Limbah Cair Industri Tenun Songket dengan Proses Elektrokoagulasi, Jurnal Redoks, 1, 2, (2018), 6-15 https://doi.org/10.31851/redoks.v1i2.2024
  7. R. Sudradjat, Aldi P. Johor Ning, Pemisahan Senyawa Fenol dari Limbah Cair Industri Pulp (Black Liquor) dengan Cara Fraksinasi - Distilasi, Jurnal Penelitian Hasil Hutan, 11, 1, (1993), 12-20
  8. Sukma Budi Ariyani, Decreased Levels of Fenol in the Case of Traditional Herb Industry Using Anaerobic Activated Sludge Method, Biopropal Industri, 2, 2, (2011),
  9. Abdelaziz Gherrou, Hacène Kerdjoudj, Raffaele Molinari, Enrico Drioli, Modelization of the transport of silver and copper in acidic thiourea medium through a supported liquid membrane, Desalination, 139, 1, (2001), 317-325 https://doi.org/10.1016/S0011-9164(01)00325-3
  10. Heru Pratomo, Pembuatan dan Karakterisasi Membran Komposit Polisulfon Selulosa Asetat Untuk Proses Ultrafiltrasi, Jurnal Pendidikan Matematika dan Sains, 3, (2003), 168-173
  11. F. Valenzuela, C. Salinas, C. Basualto, J Sapag-Hagar, C. Tapia, Influence of Nonionic Surfactant Compound on Coupled Transport of Copper (II) Through a Liquid Membrane, Journal of the Chilean Chemical Society, 48, (2003), 79-84 http://dx.doi.org/10.4067/S0717-97072003000100014
  12. N. M. Kocherginsky, Qian Yang, Lalitha Seelam, Recent advances in supported liquid membrane technology, Separation and Purification Technology, 53, 2, (2007), 171-177 https://doi.org/10.1016/j.seppur.2006.06.022
  13. X. J. Yang, A. G. Fane, K. Soldenhoff, Comparison of Liquid Membrane Processes for Metal Separations: Permeability, Stability, and Selectivity, Industrial & Engineering Chemistry Research, 42, 2, (2003), 392-403 https://doi.org/10.1021/ie011044z
  14. P. Venkateswaran, K. Palanivelu, Recovery of phenol from aqueous solution by supported liquid membrane using vegetable oils as liquid membrane, Journal of Hazardous Materials, 131, 1, (2006), 146-152 https://doi.org/10.1016/j.jhazmat.2005.09.025
  15. R. Anupama, K. Palanivelu, Removal and recovery of lead from aqueous solution using supported liquid membrane, Indian Journal of Chemical Technology, 12, (2005), 436-440
  16. Jinlong Li, Tingting Zhao, Guozhe Sui, Shuaiqiang Jia, CO2 separation from air using microporous polyvinylidene fluoride-supported triethylene glycol/alkanolamine liquid membranes, Materials Express, 6, 2, (2016), 183-190 https://doi.org/10.1166/mex.2016.1291
  17. Janani Narayanan, K. Palanivelu, Recovery of acetic acid by supported liquid membrane using vegetable oils as liquid membrane, Indian Journal of Chemical Technology, 15, (2008), 266-270
  18. Norasikin Othman, Ling Chui Heng, Norul Fatiha Mohamed Noah, Ooi Zing Yi, Norela Jusoh, Nur Alina Nasruddin, Nora’aini Ali, Sofiah Hamzah, Removal of Phenol from Wastewater by Supported Liquid Membrane Process, Jurnal Teknologi, 74, 7, (2015), 10.11113/jt.v74.4709
  19. Chiraz Zidi, Rafik Tayeb, Mourad Ben Sik Ali, Mahmoud Dhahbi, Liquid–liquid extraction and transport across supported liquid membrane of phenol using tributyl phosphate, Journal of Membrane Science, 360, 1-2, (2010), 334-340 https://doi.org/10.1016/j.memsci.2010.05.027
  20. A. M. Y. Jaber, S. A. Ali, G. O. Yahaya, Studies on phenol permeation through supported liquid membranes containing functionalized polyorganosiloxanes, Journal of Membrane Science, 250, 1, (2005), 85-94 https://doi.org/10.1016/j.memsci.2004.10.019
  21. Sangayu Mustikarini, Sintesis ionofor 5’-kloro-2, 4, 2’-trihidroksiazobenzena dan studi impregnasi resin kopoli (eugenol-dvb) dengan ionofor, Kimia, Universitas Sebelas Maret, Surakarta, 2007
  22. Malcolm P. Stevens, Kimia Polimer, Dua ed., Pradnya Paramita, Jakarta, 2001,
  23. Desi Suci Handayani, Triana Kusumaningsih, Maria Yuli, Sintesis kopoli (eugenol-DVB) sulfonat dari eugenol komponen utama minyak cengkeh (Syzygium aromaticum), Biofarmasi, 2, 2, (2004), 53-57
  24. Yingjie Qin, Joaquim M. S. Cabral, Comparison between supported gas membrane process and supported liquid membrane process for the separation of NH3 from aqueous media containing NH3 and CO2, Journal of Chemical Technology & Biotechnology, 67, 4, (1996), 323-328
  25. Agung Abadi Kiswandono, Mudasir, D. Siswanta, Nurul Hidayat Aprilita, Sri Juari Santosa, Sutopo Hadi, Synthesis and characterization of co-edaf and its application test as a carrier membrane for phenol transport using polymer inclusion membrane (PIM), Research Journal of Chemistry and Environment, 23, 5, (2019), 1-9
  26. Agung Abadi Kiswandono, Dwi Siswanta, Nurul Hidayat Aprilita, Sri Juari Santosa, Transport of Phenol Through Inclusion Polymer Membrane (PIM) Using Copoly(Eugenol-Dvb) as Membrane Carriers, Indonesian Journal of Chemistry, 12, 2, (2012), 8 https://doi.org/10.22146/ijc.21348
  27. Jian-Mei Li, Xiang-Guang Meng, Chang-Wei Hu, Juan Du, Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan, Bioresource Technology, 100, 3, (2009), 1168-1173 https://doi.org/10.1016/j.biortech.2008.09.015
  28. Ana R. Sousa, Maria A. Trancoso, Validation of an environmental friendly segmented flow method for the determination of phenol index in waters as alternative to the conventional one, Talanta, 79, 3, (2009), 796-803 https://doi.org/10.1016/j.talanta.2009.05.009
  29. Jing Fan, Yunchang Fan, Yuanchao Pei, Kun Wu, Jianji Wang, Maohong Fan, Solvent extraction of selected endocrine-disrupting phenols using ionic liquids, Separation and Purification Technology, 61, 3, (2008), 324-331 https://doi.org/10.1016/j.seppur.2007.11.005
  30. M. Teresa A. Reis, Ondina M. F. de Freitas, M. Rosinda C. Ismael, Jorge M. R. Carvalho, Recovery of phenol from aqueous solutions using liquid membranes with Cyanex 923, Journal of Membrane Science, 305, 1, (2007), 313-324 https://doi.org/10.1016/j.memsci.2007.08.016
  31. Yonggyun Park, A. H. P. Skelland, Larry J. Forney, Jae-Hong Kim, Removal of phenol and substituted phenols by newly developed emulsion liquid membrane process, Water Research, 40, 9, (2006), 1763-1772 https://doi.org/10.1016/j.watres.2006.03.005
  32. Colin F. Poole, Salwa K. Poole, Extraction of organic compounds with room temperature ionic liquids, Journal of Chromatography A, 1217, 16, (2010), 2268-2286 https://doi.org/10.1016/j.chroma.2009.09.011
  33. Xiangjun Yang, Hengpan Duan, Deqiang Shi, Ruisi Yang, Shixiong Wang, Hong Guo, Facilitated transport of phenol through supported liquid membrane containing bis(2-ethylhexyl) sulfoxide (BESO) as the carrier, Chemical Engineering and Processing: Process Intensification, 93, (2015), 79-86 https://doi.org/10.1016/j.cep.2015.05.003
  34. Ratih Purwasih, Studi Transpor Fenol Menggunakan Polymer Inclusion Membrane (PIM) dengan Molekul Pembawa Kopoli (Eugenol-Dialil Ftalat); Study of Phenol Transport Using Polymer Inclusion Membrane (PIM) with Poly(Eugenol-Co-Diallyl Phthalate) as Carrier Molecules, Universitas Gadjah Mada, 2013
  35. F. F. Zha, A. G. Fane, C. J. D. Fell, Phenol Removal by Supported Liquid Membranes, Separation Science and Technology, 29, 17, (1994), 2317-2343 https://doi.org/10.1080/01496399408003181
  36. Agung Abadi Kiswandono, Dwi Siswanta, Nurul Aprilita Hidayat, Sri Santosa Juari, Takashi Hayashita, The Capability of Copoly(Eugenol-Divinylbenzene) as a Carrier For Phenol Transport with Polymer Inclusion Membrane (PIM), Journal of Environmentally Friendly Processes, 2, 2, (2014), 57-68 http://dx.doi.org/10.13140/RG.2.1.1857.0961
  37. Kabita Chakrabarty, Prabirkumar Saha, Aloke Kumar Ghoshal, Separation of mercury from its aqueous solution through supported liquid membrane using environmentally benign diluent, Journal of Membrane Science, 350, 1, (2010), 395-401 https://doi.org/10.1016/j.memsci.2010.01.016
  38. P. Venkateswaran, A. Navaneetha Gopalakrishnan, K. Palanivelu, Di(2-ethylhexyl)phosphoric acid-coconut oil supported liquid membrane for the separation of copper ions from copper plating wastewater, Journal of Environmental Sciences, 19, 12, (2007), 1446-1453 https://doi.org/10.1016/S1001-0742(07)60236-8
  39. Ayu Hindayani, Recovery Fenol Menggunakan Polimer Polieugenol Tersambung Silang Bisphenol A Diglycidyl Ether (Badge) Sebagai Carrier dalam Membran Cair Berpendukung (Supported Liquid Membranes, SLM) Berbasis PVC, Chemistry Department, Universitas Gadjah Mada, Yogyakarta, 2011
  40. Nurtina Muktiarti, Transport of Phenol Through a PVC-Based Supported Liquid Membrane Containing Poly(Eugenol-Co-Divinyl Benzene) as a Molecular Carrier, Universitas Gadjah Mada, 2011
  41. Tadashi Nittami, Tetsuo Hitomi, Kanji Matsumoto, Kazuho Nakamura, Takaharu Ikeda, Yoshihiro Setoguchi, Manabu Motoori, Comparison of Polytetrafluoroethylene Flat-Sheet Membranes with Different Pore Sizes in Application to Submerged Membrane Bioreactor, Membranes, 2, 2, (2012), 228-236

Last update:

No citation recorded.

Last update: 2024-11-22 03:53:52

No citation recorded.