skip to main content

Crystallization of [Zn(Pyrazinamide)₂(Cl)₂] Complex and In Vitro Antibacterial Activity of the Complex Against E. coli and S. aureus

Department of Chemistry, Faculty of Sciences and Mathematics, Brawijaya University, Malang, Indonesia

Received: 18 Mar 2024; Revised: 31 Aug 2024; Accepted: 9 Sep 2024; Published: 30 Sep 2024.
Open Access Copyright 2024 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
A complex of [Zn(pza)2(Cl)2], pza = pyrazinamide, was successfully crystallized from methanol or ethanol solvents with different morphology. The complex was synthesized using the solution method in ZnCl2: pza mol ratios of 1:2 and 1:4 in both ethanol and methanol solvents. FTIR and single crystal XRD analyses were done to confirm the complex. The complex was then used for in vitro antibacterial test against E. coli and S. aureus. Experimental data shows that the type of solvent and metal-to-ligand mol ratio yields the same compound, resulting in colorless crystals that melt at 234-236°C. Large block crystals were obtained from the methanolic solution, while a higher yield was obtained from the use of a higher mol ratio of 1:4. Infrared spectra analysis confirms the presence of characteristic carbonyl and amide groups of the pza ligand. Meanwhile, single crystal XRD screening indicates that unit cell parameters of the crystals from both solvents are identical to a known zinc(II)-pza complex. In vitro antibacterial tests against E. coli and S. aureus show that the complex had much better activity than the ZnCl2 and the free pza. In addition, the complex performs better antibacterial activity toward gram-positive S. aureus than the gram-negative E. coli.
Fulltext View|Download
Keywords: antibacterial activity; metal complex; crystals; zinc complex; pyrazinamide

Article Metrics:

  1. Jasmin Ara Shampa, Md. Rakibul Islam, Md. Saddam Hossain, Gagi Tauhidur Rahman, C. M. Zakaria, Kudrat-E.-Zahan Md., Physiochemical and Antibacterial Activity Investigation on Noble Schiff Base Cu(II) Complex, American Journal of Heterocyclic Chemistry, 3, 4, (2017), 37-41 https://doi.org/10.11648/j.ajhc.20170304.11
  2. N. Raman, R. Jeyamurugan, Synthesis, characterization, and DNA interaction of mononuclear copper(II) and zinc(II) complexes having a hard–soft NS donor ligand, Journal of Coordination Chemistry, 62, 14, (2009), 2375-2387 https://doi.org/10.1080/00958970902825195
  3. Antonio F. Santos, Débora F. Brotto, Lis R. V. Favarin, Natália A. Cabeza, Geziel R. Andrade, Margareth Batistote, Alberto A. Cavalheiro, Ademir Neves, Daniela C. M. Rodrigues, Ademir dos Anjos, Study of the antimicrobial activity of metal complexes and their ligands through bioassays applied to plant extracts, Revista Brasileira de Farmacognosia, 24, 3, (2014), 309-315 https://doi.org/10.1016/j.bjp.2014.07.008
  4. Jianghua Liu, Di Wu, Niu Zhu, Yongning Wu, Guoliang Li, Antibacterial mechanisms and applications of metal-organic frameworks and their derived nanomaterials, Trends in Food Science & Technology, 109, (2021), 413-434 https://doi.org/10.1016/j.tifs.2021.01.012
  5. A. A. Warra, Transition metal complexes and their application in drugs and cosmetics-a Review, Journal of Chemical and Pharmaceutical Research, 3, 4, (2011), 951-958
  6. Nadia Cikita Handayani, Putri Nuzilla Shafira, Sasti Gona Fadhilah, Potensi Pengembangan Agen Antibakteri dari Senyawa Kompleks Logam Transisi di Indonesia, The Indonesian Green Technology Journal, 10, 1, (2021), 9-20
  7. Hossein Chiniforoshan, Zahra Sadeghian Radani, Leila Tabrizi, Hossein Tavakol, Mohammad R. Sabzalian, Gholamhossein Mohammadnezhad, Helmar Görls, Winfried Plass, Pyrazinamide drug interacting with Co(III) and Zn(II) metal ions based on 2,2′-bipyridine and 1,10-phenanthroline ligands: Synthesis, studies and crystal structure, DFT calculations and antibacterial assays, Journal of Molecular Structure, 1081, (2015), 237-243 https://doi.org/10.1016/j.molstruc.2014.10.027
  8. Sílvia Quaresma, Paula C. Alves, Patrícia Rijo, M. Teresa Duarte, Vânia André, Antimicrobial Activity of Pyrazinamide Coordination Frameworks Synthesized by Mechanochemistry, Molecules, 26, 7, (2021), 1904 https://doi.org/10.3390/molecules26071904
  9. L. Findoráková, K. Győryová, M. Melník, M. Koman, Faten A. Nour El-Dien, Preparation, thermal decomposition, and crystal structure of Zn(II) 2-chlorobenzoate complex with nicotinamide, Journal of Coordination Chemistry, 63, 19, (2010), 3348-3355 https://doi.org/10.1080/00958972.2010.512083
  10. Julia Pasquet, Yves Chevalier, Jocelyne Pelletier, Emmanuelle Couval, Dominique Bouvier, Marie-Alexandrine Bolzinger, The contribution of zinc ions to the antimicrobial activity of zinc oxide, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, (2014), 263-274 https://doi.org/10.1016/j.colsurfa.2014.05.057
  11. Oleg V. Dolomanov, Luc J. Bourhis, Richard J. Gildea, Judith A. K. Howard, Horst Puschmann, OLEX2: a complete structure solution, refinement and analysis program, Journal of Applied Crystallography, 42, 2, (2009), 339-341 https://doi.org/10.1107/S0021889808042726
  12. Yuniar P. Prananto, David R. Turner, Jinzhen Lu, Stuart R. Batten, Solvent-Induced Structural Changes in Complexes of 1,2-Bis(3-(3-pyridyl)pyrazolyl)ethane, Australian Journal of Chemistry, 62, 2, (2009), 108-114 https://doi.org/10.1071/CH08483
  13. Hong-Bo Yuan, Shi-Yao Yang, Zhao-Xiong Xie, Rong-Bing Huang, Stuart R. Batten, Solvent-induced assembly of two supramolecular isomers of MnII thiophenedicarboxylate coordination polymers, Inorganic Chemistry Communications, 12, 8, (2009), 755-757 https://doi.org/10.1016/j.inoche.2009.06.007
  14. Daotan Liu, Siyuan Zhang, Zhijian Wu, Lattice Energy Estimation for Inorganic Ionic Crystals, Inorganic Chemistry, 42, 7, (2003), 2465-2469 https://doi.org/10.1021/ic025902a
  15. H. Marshan Robert, D. Usha, M. Amalanathan, R. Racil Jeya Geetha, M. Sony Michael Mary, Spectroscopic (IR, Raman, UV, NMR) characterization and investigation of reactive properties of pyrazine-2-carboxamide by anti-bacterial, anti-mycobacterial, Fukui function, molecular docking and DFT calculations, Chemical Data Collections, 30, (2020), 100583 https://doi.org/10.1016/j.cdc.2020.100583
  16. Tutik Setianingsih, Yuniar Ponco Prananto, Spektroskopi Inframerah untuk Karakterisasi Material Anorganik, Universitas Brawijaya Press, 2020,
  17. Sadif A. Shirvan, Sara Haydari Dezfuli, Dichloridobis (pyrazine-2-carboxamide-κN4) zinc (II), Acta Crystallographica Section E: Structure Reports Online, 68, 5, (2012), m546 https://doi.org/10.1107/S1600536812013888
  18. Jiang-Feng Song, Jing-Jing Luo, Ying-Ying Jia, Li-Dong Xin, Zhi-Zhu Lin, Rui-Sha Zhou, Solvent-induced construction of two zinc supramolecular isomers: synthesis, framework flexibility, sensing properties, and adsorption of dye molecules, RSC Advances, 7, 58, (2017), 36575-36584 https://doi.org/10.1039/C7RA05049F
  19. Run-Qing Miao, Qi-Qi Zhou, Shi-Qiang Wang, Xiao-Yue Cheng, Dan-Feng Wang, Rong-Bin Huang, Solvent-induced Zn(II) coordination polymers with 1, 3, 5-benzenetricarboxylic acid, Journal of Molecular Structure, 1184, (2019), 219-224 https://doi.org/10.1016/j.molstruc.2019.02.015
  20. Jean B. Patel, Performance standards for antimicrobial susceptibility testing, Clinical and laboratory standards institute, 2017,
  21. P. Shelar, C. Nazareth, R. Khorjuwenkar, O. Pinto, G. Kamat, B. Naik, A Novel UV Spectrophotometric Method For Simultaneous Estimation of Metoprolol Tartrate and Atorvastatin Calcium Based on Absorbance Correction Principle, Rasayan Journal of Chemistry, 15, 4, (2022), 2822-2827 https://doi.org/10.31788/rjc.2022.1547065
  22. Giovanni Piccaro, Giovanna Poce, Mariangela Biava, Federico Giannoni, Lanfranco Fattorini, Activity of lipophilic and hydrophilic drugs against dormant and replicating Mycobacterium tuberculosis, The Journal of Antibiotics, 68, 11, (2015), 711-714 https://doi.org/10.1038/ja.2015.52
  23. Alaa E. Ali, Gehan S. Elasala, Essam A. Mohamed, Sherif A. Kolkaila, Spectral, thermal studies and biological activity of pyrazinamide complexes, Heliyon, 5, 11, (2019), e02912 https://doi.org/10.1016/j.heliyon.2019.e02912
  24. I Wayan Dasna, Dewi Mariyam, Husni Wahyu Wijaya, Ubed Sonai Fahruddin Arrozi, Sugiarto Sugiarto, Synthesis, Structural Determination and Antibacterial Properties of Zinc(II) Complexes Containing 4-Aminopyridine Ligands, Indonesian Journal of Chemistry, 23, 4, (2023), 1108-1119 https://doi.org/10.22146/ijc.82801
  25. Sadia Rehman, Muhammad Ikram, Fazle Subhan, Mutasem Sinnokrot, Waliullah Khan, Antibacterial Activities of Transition Metal complexes of Mesocyclic Amidine 1,4-diazacycloheptane (DACH), Open Chemistry, 17, 1, (2019), 936-942 https://doi.org/10.1515/chem-2019-0108
  26. Amah Colette Benedicta Yuoh, Moise Ondoh Agwara, Divine Mbom Yufanyi, Mariam Aseng Conde, Rajamony Jagan, Kenneth Oben Eyong, Synthesis, Crystal Structure, and Antimicrobial Properties of a Novel 1-D Cobalt Coordination Polymer with Dicyanamide and 2-Aminopyridine, International Journal of Inorganic Chemistry, 2015, 1, (2015), 106838 https://doi.org/10.1155/2015/106838
  27. Ramesh S. Yamgar, Y. Nivid, Satish Nalawade, Mustapha Mandewale, R. G. Atram, Sudhir S. Sawant, Novel Zinc(II) Complexes of Heterocyclic Ligands as Antimicrobial Agents: Synthesis, Characterisation, and Antimicrobial Studies, Bioinorganic Chemistry and Applications, 2014, 1, (2014), 276598 https://doi.org/10.1155/2014/276598
  28. Bernardo Ribeiro da Cunha, Luís P. Fonseca, Cecília R. C. Calado, Antibiotic Discovery: Where Have We Come from, Where Do We Go?, Antibiotics, 8, 2, (2019), 45 https://doi.org/10.3390/antibiotics8020045
  29. Mofei Shen, Fereidoun Forghani, Xueqian Kong, Donghong Liu, Xingqian Ye, Shiguo Chen, Tian Ding, Antibacterial applications of metal–organic frameworks and their composites, Comprehensive Reviews in Food Science and Food Safety, 19, 4, (2020), 1397-1419 https://doi.org/10.1111/1541-4337.12515
  30. J. Jang, H.‐G. Hur, M. J. Sadowsky, M. N. Byappanahalli, T. Yan, S. Ishii, Environmental Escherichia coli: ecology and public health implications—a review, Journal of Applied Microbiology, 123, 3, (2017), 570-581 https://doi.org/10.1111/jam.13468
  31. Gnanamani Arumugam, Hariharan Periasamy, Satyaseela Maneesh Paul, Staphylococcus aureus: Overview of Bacteriology, Clinical Diseases, Epidemiology, Antibiotic Resistance and Therapeutic Approach, in: E. Shymaa, E.C.A. Laura (Eds.) Frontiers in Staphylococcus aureus, IntechOpen, Rijeka, 2017, https://doi.org/10.5772/67338

Last update:

No citation recorded.

Last update: 2024-12-25 17:52:32

No citation recorded.