1Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia
2School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh, Pulau Pinang, 13500, Malaysia
BibTex Citation Data :
@article{JKSA67293, author = {Sriatun Sriatun and Khairini Pertiwi and Choiril Azmiyawati and Mukhammad Asy'ari and Damar Bima and Nor Zubir}, title = {Enhanced Antibacterial Efficacy of Ag(I), Cu(II), and Zn(II) Modified Sodalite Zeolite Against Escherichia coli and Staphylococcus aureus}, journal = {Jurnal Kimia Sains dan Aplikasi}, volume = {27}, number = {10}, year = {2024}, keywords = {sodalite; zeolite; antibacterial; disk diffusion; well diffusion}, abstract = { Sodalite zeolite modified with metal ions Ag + , Cu 2+ , Cu 2+ , and Zn 2+ was successfully synthesized and evaluated for antibacterial activity. The research aims to obtain silver, copper, and zinc metal-modified sodalite separately and determine their antibacterial activity on Escherichia coli and Staphylococcus aureus bacteria. Sodalite zeolite was synthesized using ludox and sodium aluminate through hydrothermal methods, ensuring uniform crystal growth and optimal crystallinity, as confirmed by X-ray diffraction (XRD) analysis. The average particle sizes of the modified zeolites were determined to be 54.9 nm for Ag-Zeolite, 37.2 nm for Cu-Zeolite, and 28.56 nm for Zn-Zeolite, with structural changes observed through alterations in peak intensity. Scanning Electron Microscopy - Energy Dispersive X-ray (SEM-EDX) analysis showed no significant change in the zeolite’s morphology. In addition, the EDX results showed the presence of Ag (3.15%), Cu (3%), and Zn (2.41%) metals indicating successful ion exchange. Antibacterial assays revealed that Cu-Zeolite demonstrated superior efficacy inhibition zones against Escherichia coli (14.04±1.26) and Staphylococcus aureus (20.74±0.48), highlighting its potential as an antimicrobial agent. The mechanism of action involved the controlled release of metal ions, disrupting bacterial cell membranes and metabolic processes. Notably, Cu 2+ ions exhibited the strongest antibacterial properties due to their smaller ionic radius and higher electronegativity than Ag + and Zn 2+ . This research underscores the promising applications of metal-ion-modified sodalite zeolite in medical and environmental contexts. }, issn = {2597-9914}, pages = {477--484} doi = {10.14710/jksa.27.10.477-484}, url = {https://ejournal.undip.ac.id/index.php/ksa/article/view/67293} }
Refworks Citation Data :
Sodalite zeolite modified with metal ions Ag+, Cu2+, Cu2+, and Zn2+ was successfully synthesized and evaluated for antibacterial activity. The research aims to obtain silver, copper, and zinc metal-modified sodalite separately and determine their antibacterial activity on Escherichia coli and Staphylococcus aureus bacteria. Sodalite zeolite was synthesized using ludox and sodium aluminate through hydrothermal methods, ensuring uniform crystal growth and optimal crystallinity, as confirmed by X-ray diffraction (XRD) analysis. The average particle sizes of the modified zeolites were determined to be 54.9 nm for Ag-Zeolite, 37.2 nm for Cu-Zeolite, and 28.56 nm for Zn-Zeolite, with structural changes observed through alterations in peak intensity. Scanning Electron Microscopy - Energy Dispersive X-ray (SEM-EDX) analysis showed no significant change in the zeolite’s morphology. In addition, the EDX results showed the presence of Ag (3.15%), Cu (3%), and Zn (2.41%) metals indicating successful ion exchange. Antibacterial assays revealed that Cu-Zeolite demonstrated superior efficacy inhibition zones against Escherichia coli (14.04±1.26) and Staphylococcus aureus (20.74±0.48), highlighting its potential as an antimicrobial agent. The mechanism of action involved the controlled release of metal ions, disrupting bacterial cell membranes and metabolic processes. Notably, Cu2+ ions exhibited the strongest antibacterial properties due to their smaller ionic radius and higher electronegativity than Ag+ and Zn2+. This research underscores the promising applications of metal-ion-modified sodalite zeolite in medical and environmental contexts.
Article Metrics:
Last update:
Last update: 2024-11-26 09:56:40
As an article writer, the author has the right to use their articles for various purposes, including use by institutions that employ authors or institutions that provide funding for research. Author rights are granted without special permission.
Author who publishes a paper at JKSA has the broad right to use their work for teaching and scientific purposes without the need to ask permission, including: used for (i) teaching in the author's class or institution, (ii) presentation at meetings or conferences and distributing copies to participants ; (iii) training conducted by the author or author's institution; (iv) distribution to colleagues for research use; (v) use in the compilation of subsequent authors' works; (vi) inclusion in a thesis or dissertation; (vi) reuse of part of the article in another work (with citation); (vii) preparation of derivative works (with citation); (viii) voluntary posting on open websites operated by authors or author institutions for scientific purposes (follow the CC BY-SA License).
Authors and readers can copy and redistribute material in any media or format, and mix, modify, and build material for any purpose but they must provide appropriate credit (provide article citation or content), providing links to the license, and indicate if there are changes.
The authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Jurnal Kimia Sains dan Aplikasi (JKSA). Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations.
Reproduce any part of this journal, its storage in the database or its transmission by all forms or media is permitted does not need for written permission from JKSA. However, it should be cited as an honor in academic manners
JKSA and the Chemistry Department of Diponegoro University and the Editor make every effort to ensure that there are no data, opinions, or false or misleading statements published in JKSA. However, the content of the article is the sole and exclusive responsibility of each author.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form - Indonesian] [Copyright Transfer Form - English]. The copyright form should be signed originally and send to the Editor in the form of printed letters, scanned documents sent via email or fax.
Adi Darmawan, Ph.D (Editor in Chief)
Editor in chief of Jurnal Kimia Sains dan Aplikasi (JKSA)
Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University
Visitor: View My Stats
Jurnal Kimia Sains dan Aplikasi is indexed in:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.