skip to main content

Physicochemical Characteristics of PVDF/ZSM-5 Composite Membrane for Potential Applications in Vanadium Redox Battery

1Department of Chemistry, Faculty of Mathematics and Basic Sciences, Jenderal Soedirman University, Purwokerto, Indonesia

2Graduate School of Science and Engineering, University of Toyama 930-8555, Gofuku, Toyama, Japan

Received: 20 Feb 2025; Revised: 3 Jul 2025; Accepted: 8 Jul 2025; Published: 5 Aug 2025.
Open Access Copyright 2025 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Composite membranes were synthesized using poly-(vinylidene fluoride) (PVDF) and zeolite (ZSM-5) to improve the performance of PVDF as a battery separator. The PVDF-ZSM-5 membranes, prepared with varying concentrations of ZSM-5, underwent characterizations of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). These analyses revealed a notable increase in β-phase formation in PVDF, greater porosity, and improved surface morphology due to the incorporation of ZSM-5. Evaluations of their physicochemical properties showed that these membranes resulted in electrical conductivity up to 96.4 mS/cm, enhanced contact area, porosity reaching 78.61%, and flux value up to 5.4 ×10⁻2 L m⁻2 h⁻2. Adjustments in ZSM-5 concentrations proved instrumental in fine-tuning these performance metrics. These findings highlight the potential of PVDF-ZSM-5 membranes as a cost-effective membrane separator for redox battery systems. This research lays the groundwork for future advancements and broader commercial applications in energy storage technology.

Fulltext View|Download
Keywords: PVDF; ZSM5; polymer membrane; separator membrane; redox battery
Funding: Ministry of Education, Culture, Research, and Technology, Republic Indonesia

Article Metrics:

  1. Rahul Sharma, Harish Kumar, Gaman Kumar, Saloni Sharma, Ranjan Aneja, Ashok K. Sharma, Ramesh Kumar, Parvin Kumar, Progress and challenges in electrochemical energy storage devices: Fabrication, electrode material, and economic aspects, Chemical Engineering Journal, 468, (2023), 143706 https://doi.org/10.1016/j.cej.2023.143706
  2. Theodore Azemtsop Manfo, Mustafa Ergin Şahin, Intercalation Reaction in Lithium-Ion Battery: Effect on Cell Characteristics, The International Journal of Materials and Engineering Technology, 6, 2, (2023), 70-78
  3. A. M. Theodore, Promising cathode materials for rechargeable lithium-ion batteries: a review, International Journal of Sustainable Energy and Environmental Research, 14, 1, (2023), 51-58
  4. Theodore Azemtsop Manfo, A Comprehensive Analysis of Material Revolution to Evolution in Lithium-ion Battery Technology, Turkish Journal of Materials, 8, 1, (2023), 1-13
  5. Theodore Azemtsop Manfo, Structural, electrical, and electrochemical studies of the olivine LiMPO4 (M=Fe, Co, Cr, Mn, V) as cathode materials for lithium-ion rechargeable batteries based on the intercalation principle [version 1; peer review: 1 approved with reservations, 3 not approved], Materials Open Research, 2, 11, (2023), https://doi.org/10.12688/materialsopenres.17559.1
  6. Azemtsop Manfo Theodore, Progress into lithium-ion battery research, Journal of Chemical Research, 47, 3, (2023), https://doi.org/10.1177/17475198231183349
  7. Azemtsop Manfo Theodore, Abdullahi Abbas Adam, Pawan Singh Dhapola, Effect of Layered, Spinel, and Olivine-Based Positive Electrode Materials on Rechargeable Lithium-Ion Batteries: A Review, Journal of Computational Mechanics, 6, 4, (2023), https://doi.org/10.46253/jcmps.v6i4.a4
  8. Theodore Azemtsop Manfo, Mustafa Ergin Şahin, Development of an automatic photovoltaic cell-battery powered water irrigation system incorporated with Arduino software for agricultural activities, Gazi Mühendislik Bilimleri Dergisi, 10, 2, (2024), 314-328 http://doi.org/10.30855/gmbd.0705a07
  9. Theodore Azemtsop Manfo, Hannu Laaksonen, A review of carbon-based hybrid materials for supercapacitors, New Carbon Materials, 40, 1, (2025), 81-110 https://doi.org/10.1016/S1872-5805(25)60943-7
  10. Nacer Badi, Azemtsop Manfo Theodore, Saleh A. Alghamdi, Ayshah S. Alatawi, Adnan Almasoudi, Abderrahim Lakhouit, Aashis S. Roy, Alex Ignatiev, Thermal effect on curved photovoltaic panels: Model validation and application in the Tabuk region, PLOS One, 17, 11, (2022), e0275467 https://doi.org/10.1371/journal.pone.0275467
  11. Utsav Dalal, Anil Verma, Highly Economical and Efficient Polyethylene Separator for Vanadium Redox Flow Battery, Energy & Fuels, 38, 13, (2024), 12182-12191 https://doi.org/10.1021/acs.energyfuels.4c01685
  12. Zhen Jiang, Konstantin Klyukin, Kaellen Miller, Vitaly Alexandrov, Mechanistic Theoretical Investigation of Self-Discharge Reactions in a Vanadium Redox Flow Battery, The Journal of Physical Chemistry B, 123, 18, (2019), 3976-3983 https://doi.org/10.1021/acs.jpcb.8b10980
  13. Z. Yang, R. M. Darling, M. L. Perry, Electrolyte Compositions in a Vanadium Redox Flow Battery Measured with a Reference Cell, Journal of The Electrochemical Society, 166, 13, (2019), A3045 https://doi.org/10.1149/2.1161913jes
  14. Utsav Dalal, Manshu Kapoor, Anil Verma, Low-Cost Pore-Filled PVDF–Nafion Composite Membrane for the Vanadium Redox Flow Battery, Energy & Fuels, 37, 17, (2023), 13457-13466 https://doi.org/10.1021/acs.energyfuels.3c01932
  15. Ce Shi, Tingli Liu, Wenduo Chen, Fengchao Cui, Lunyang Liu, Yuyang Cai, Yunqi Li, Interaction, structure and tensile property of swollen Nafion® membranes, Polymer, 213, (2021), 123224 https://doi.org/10.1016/j.polymer.2020.123224
  16. Qi Zhang, Quan-Feng Dong, Ming-Sen Zheng, Zhao-Wu Tian, The preparation of a novel anion-exchange membrane and its application in all-vanadium redox batteries, Journal of Membrane Science, 421-422, (2012), 232-237 https://doi.org/10.1016/j.memsci.2012.07.024
  17. Utsav Dalal, Anil Verma, Low-cost and durable polyvinyl alcohol modified polyethylene separator for vanadium redox flow battery, Journal of Energy Storage, 100, (2024), 113413 https://doi.org/10.1016/j.est.2024.113413
  18. Majid Badini Pourazar, Toraj Mohammadi, Mohamad Reza Jafari Nasr, Omid Bakhtiari, Mehran Javanbakht, Preparation and characterization of poly(vinylidene fluoride)-13X zeolite mixed matrix membranes for lithium ion batteries' separator with enhanced performance, Journal of Applied Polymer Science, 137, 44, (2020), 49367 https://doi.org/10.1002/app.49367
  19. Carlos M. Costa, Maria M. Silva, S. Lanceros-Méndez, Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications, RSC Advances, 3, 29, (2013), 11404-11417 https://doi.org/10.1039/C3RA40732B
  20. Kyungho Hwang, Byeongmin Kwon, Hongsik Byun, Preparation of PVdF nanofiber membranes by electrospinning and their use as secondary battery separators, Journal of Membrane Science, 378, 1, (2011), 111-116 https://doi.org/10.1016/j.memsci.2011.06.005
  21. C. M. Costa, M. Kundu, V. F. Cardoso, A. V. Machado, M. M. Silva, S. Lanceros-Méndez, Silica/poly(vinylidene fluoride) porous composite membranes for lithium-ion battery separators, Journal of Membrane Science, 564, (2018), 842-851 https://doi.org/10.1016/j.memsci.2018.07.092
  22. Dezhi Wu, Lei Deng, Yu Sun, Kwok Siong Teh, Chuan Shi, Qiulin Tan, Jinbao Zhao, Daoheng Sun, Liwei Lin, A high-safety PVDF/Al2O3 composite separator for Li-ion batteries via tip-induced electrospinning and dip-coating, RSC Advances, 7, 39, (2017), 24410-24416 https://doi.org/10.1039/c7ra02681a
  23. Monali V. Bhute, Yogita P. Mahant, Subhash B. Kondawar, Titanium dioxide / poly(vinylidene fluoride) hybrid polymer composite nanofibers as potential separator for lithium ion battery, Journal of Materials NanoScience, 4, 1, (2017), 6-12
  24. João Nunes-Pereira, Manab Kundu, Attila Gören, Maria Manuela Silva, Carlos M. Costa, Lifeng Liu, Senentxu Lanceros-Méndez, Optimization of filler type within poly(vinylidene fluoride-co-trifluoroethylene) composite separator membranes for improved lithium-ion battery performance, Composites Part B: Engineering, 96, (2016), 94-102 https://doi.org/10.1016/j.compositesb.2016.04.041
  25. Jiawen Zhang, Yakang Xiang, Muhammad Imran Jamil, Jianguo Lu, Qinghua Zhang, Xiaoli Zhan, Fengqiu Chen, Polymers/zeolite nanocomposite membranes with enhanced thermal and electrochemical performances for lithium-ion batteries, Journal of Membrane Science, 564, (2018), 753-761 https://doi.org/10.1016/j.memsci.2018.07.056
  26. Roberto Navarro-Tovar, Patricia Gorgojo, Megan Jobson, Peter Martin, Maria Perez-Page, Innovations in water desalination: enhancing air gap membrane distillation performance by the incorporation of clay nanoparticles into PVDF matrix membranes, Environmental Science: Water Research & Technology, 10, 10, (2024), 2418-2431 https://doi.org/10.1039/D4EW00326H
  27. Dong Zou, Chang Hu, Enrico Drioli, Zhaoxiang Zhong, Engineering green and high-flux poly(vinylidene fluoride) membranes for membrane distillation via a facile co-casting process, Journal of Membrane Science, 655, (2022), 120577 https://doi.org/10.1016/j.memsci.2022.120577
  28. Jinqiang Cui, Jiuqing Liu, Chunfeng He, Jie Li, Xiufeng Wu, Composite of polyvinylidene fluoride–cellulose acetate with Al(OH)3 as a separator for high-performance lithium ion battery, Journal of Membrane Science, 541, (2017), 661-667 https://doi.org/10.1016/j.memsci.2017.07.048
  29. Mi-mi Tao, Fu Liu, Bi-rong Ma, Li-xin Xue, Effect of solvent power on PVDF membrane polymorphism during phase inversion, Desalination, 316, (2013), 137-145 https://doi.org/10.1016/j.desal.2013.02.005
  30. Mohammed Alsultan, Effect of polymer dope solution temperature on the fabrication of flat-sheet polyvinylidene fluoride (PVDF) membranes: Water filtration and membrane distillation (MD) applications, Umeå University, 2021
  31. Yi Shen, Aik Chong Lua, Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation, Chemical Engineering Journal, 192, (2012), 201-210 https://doi.org/10.1016/j.cej.2012.03.066
  32. Masoud Rahbari-Sisakht, Ahmad Fauzi Ismail, Takeshi Matsuura, Daryoush Emadzadeh, Long-term study of CO2 absorption by PVDF/ZSM-5 hollow fiber mixed matrix membrane in gas–liquid contacting process, Journal of Applied Polymer Science, 134, 14, (2017), https://doi.org/10.1002/app.44606
  33. Zhanbin Qiu, Tingping Lei, Shuiping Li, Xiaomei Cai, Kai Yang, Insights into Polymorphic Transition of PVDF during Nonsolvent-Induced Phase Separation, Macromolecules, 57, 3, (2024), 1159-1168 https://doi.org/10.1021/acs.macromol.3c02394
  34. Haolong Bai, Xuan Wang, Yitong Zhou, Liping Zhang, Preparation and characterization of poly(vinylidene fluoride) composite membranes blended with nano-crystalline cellulose, Progress in Natural Science: Materials International, 22, 3, (2012), 250-257 https://doi.org/10.1016/j.pnsc.2012.04.011
  35. Majid Badini Pourazar, Toraj Mohammadi, Mohamad Reza Jafari Nasr, Mehran Javanbakht, Omid Bakhtiari, Preparation of 13X zeolite powder and membrane: investigation of synthesis parameters impacts using experimental design, Materials Research Express, 7, 3, (2020), 035004 https://doi.org/10.1088/2053-1591/ab7217
  36. Retno Ariadi Lusiana, Nor Basid Adiwibawa Prasetya, Khabibi Khabibi, Pengaruh Penambahan Aditif terhadap Karakterisasi Fisikokimia Membran Polisulfon, Indonesian Journal of Chemical Science, 9, 3, (2020), 194-200
  37. Ervin Tri Suryandari, Sintesis Membran Komposit PVDF-Zeolit untuk Penghilangan Metilen Biru, al Kimiya: Jurnal Ilmu Kimia dan Terapan, 6, 2, (2019), 58-66 https://doi.org/10.15575/ak.v6i2.6491
  38. Wenpeng Li, Gang Wang, Xinxin Wang, Wenqing Wu, Zeyu Zhao, Fenglian Zhang, Guoxia Jiang, Ganggang Li, Jie Cheng, Zhongshen Zhang, Zhengping Hao, Hydrophobic Porous Aromatic Framework as an Adsorbent for Effectively Selective Removal of Aromatic Volatile Organic Compounds, ACS ES&T Engineering, 4, 6, (2024), 1356-1366 https://doi.org/10.1021/acsestengg.3c00633
  39. Dong Hee Kang, Hyun Wook Kang, Surface energy characteristics of zeolite embedded PVDF nanofiber films with electrospinning process, Applied Surface Science, 387, (2016), 82-88 https://doi.org/10.1016/j.apsusc.2016.06.096
  40. Sheng Shui Zhang, A review on the separators of liquid electrolyte Li-ion batteries, Journal of Power Sources, 164, 1, (2007), 351-364 https://doi.org/10.1016/j.jpowsour.2006.10.065
  41. Z. Y. Zhang, T. B. Shi, C. Z. Jia, W. J. Ji, Y. Chen, M. Y. He, Adsorptive removal of aromatic organosulfur compounds over the modified Na-Y zeolites, Applied Catalysis B: Environmental, 82, 1, (2008), 1-10 https://doi.org/10.1016/j.apcatb.2008.01.006
  42. Beata Fryczkowska, Marta Sieradzka, Ewa Sarna, Ryszard Fryczkowski, Jarosław Janicki, Influence of a graphene oxide additive and the conditions of membrane formation on the morphology and separative properties of poly(vinylidene fluoride) membranes, Journal of Applied Polymer Science, 132, 46, (2015), https://doi.org/10.1002/app.42789
  43. Zuhriah Mumtazah, Reva Edra Nugraha, Arif Priyangga, Maktum Muharja, Rizki Fitria Darmayanti, Ditta Kharisma Yolanda Putri, Change of PVDF Ultrafiltration Membranes for Humus Acid Removal Applications in Water by Adding Fe2O3/Zeolite Additives, The 3rd International Conference on Renewable Energy (I-CORE 2023), 2024 https://doi.org/10.1051/e3sconf/202447303007
  44. Alfian Yulia Rahmat, Intan Syahbanu, Rudiyansyah Rudiyansyah, Ultrafiltration Membrane of Polysulfone/TiO2 (Psf/TiO2) for Diesel Fuel Polluted Water Filtration, Jurnal Kartika Kimia, 3, 1, (2020), 7-12 https://doi.org/10.26874/jkk.v3i1.46

Last update:

No citation recorded.

Last update: 2025-08-19 12:10:08

No citation recorded.