skip to main content

The Production of Polyhydroxyalkanoate (PHA) Bioplastic from Palm Oil Mill Effluent (POME) using Pseudomonas aeruginosa

1Agro Chemical Engineering Department, ATI Padang Polytechnic, Padang 25171, West Sumatra, Indonesia

2Chemical Analysis Department, ATI Padang Polytechnic, Padang 25171, West Sumatra, Indonesia

Received: 25 May 2025; Revised: 5 Aug 2025; Accepted: 13 Aug 2025; Published: 10 Sep 2025.
Open Access Copyright 2025 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
Biodegradable plastics were continuously developed to replace non-degradable plastics. One type of bioplastic that was used was poly(hydroxyalkanoate) (PHA). In this study, PHA was synthesized using Palm Oil Mill Effluent (POME) and the bacterium Pseudomonas aeruginosa through a fed-batch (aerobic–anaerobic) fermentation process over six days. The study aimed to evaluate the use of POME as the sole carbon source for PHA synthesis by Pseudomonas aeruginosa through a fed-batch aerobic–anaerobic fermentation process. The total substrate volumes used in this study were 30, 60, and 90% (v/v), which were gradually added (fed-batch) at rates of 5, 10, and 15% (v/v)/day over the six-day fermentation period. The analytical results showed significant reductions in BOD (Biological Oxygen Demand), COD (Chemical Oxygen Demand), ammonia (NH3), and total suspended solids (TSS) after the fermentation process, indicating that organic and chemical compounds were degraded during fermentation. PHA production from POME showed that the maximum yield occurred on the third day, with 16.89 g/kg dry biomass and a PHA concentration of 9.089 wt% (1.53 g/kg) from a total substrate volume of 9 L. The fermentation process reached the exponential phase on the third day, declined on the fourth day, and stabilized by the sixth day, with an average yield of 5.248 wt%. Characterization using X-ray diffraction (XRD) confirmed that the produced PHA had a structure consistent with standard PHA. Further analysis of water absorption and biodegradability showed fluctuating results, with the best performance observed at a 5% concentration, indicating low water absorption and good biodegradability. In addition, the bioplastic produced had a tensile strength of 554.32 MPa and a modulus of elasticity of 5834.95 MPa.
Fulltext View|Download
Keywords: Polyhydroxyalkanoate; Palm Oil Mill Effluent; Pseudomonas aeruginosa; Bioplastic

Article Metrics:

  1. Min Liu, Tianrui Zhang, Liangkun Long, Rui Zhang, Shaojun Ding, Efficient enzymatic degradation of poly (ɛ-caprolactone) by an engineered bifunctional lipase-cutinase, Polymer Degradation and Stability, 160, (2019), 120-125 https://doi.org/10.1016/j.polymdegradstab.2018.12.020
  2. Irma Kresnawaty, Agustin Sri Mulyatni, Deden Dewantara Eris, Haryo Tejo Prakoso, Karakterisasi PHA yang dihasilkan oleh Pseudomonas aeruginosa dan Bacillus subtilis yang ditumbuhkan dalam media limbah cair pabrik kelapa sawit, Menara Perkebunan, 82, 2, (2016), 57-63 https://doi.org/10.22302/iribb.jur.mp.v82i2.20
  3. Viviana Urtuvia, Pamela Villegas, Myriam González, Michael Seeger, Bacterial production of the biodegradable plastics polyhydroxyalkanoates, International Journal of Biological Macromolecules, 70, (2014), 208-213 https://doi.org/10.1016/j.ijbiomac.2014.06.001
  4. Saiqa Tufail, Sajida Munir, Nazia Jamil, Variation analysis of bacterial polyhydroxyalkanoates production using saturated and unsaturated hydrocarbons, Brazilian Journal of Microbiology, 48, 4, (2017), 629-636 https://doi.org/10.1016/j.bjm.2017.02.008
  5. Dhawal P. Tamboli, Mayur B. Kurade, Tatoba R. Waghmode, Swati M. Joshi, Sanjay P. Govindwar, Exploring the ability of Sphingobacterium sp. ATM to degrade textile dye Direct Blue GLL, mixture of dyes and textile effluent and production of polyhydroxyhexadecanoic acid using waste biomass generated after dye degradation, Journal of Hazardous Materials, 182, 1, (2010), 169-176 https://doi.org/10.1016/j.jhazmat.2010.06.011
  6. Aznury Martha, Setiadi Tjandra, Identifikasi Senyawa Asam Lemak Volatil dari Air Limbah Industri Minyak Kelapa Sawit untuk Produksi Polihidroksialkanoat oleh Ralstonia eutropha JMP 134, Jurnal Selulosa, 11, 01, (2021), 49-58
  7. Guilherme H. D. Oliveira, Marcelo Zaiat, José Alberto D. Rodrigues, Juliana A. Ramsay, Bruce A. Ramsay, Towards the Production of mcl-PHA with Enriched Dominant Monomer Content: Process Development for the Sugarcane Biorefinery Context, Journal of Polymers and the Environment, 28, 3, (2020), 844-853 https://doi.org/10.1007/s10924-019-01637-2
  8. Mohd Fadhil Md. Din, Ponraj Mohanadoss, Zaini Ujang, Mark van Loosdrecht, Salmiati Muhd Yunus, Shreeshivadasan Chelliapan, Vasudeo Zambare, Gustaf Olsson, Development of Bio-PORec® system for polyhydroxyalkanoates (PHA) production and its storage in mixed cultures of palm oil mill effluent (POME), Bioresource Technology, 124, (2012), 208-216 https://doi.org/10.1016/j.biortech.2012.08.036
  9. Noreen Iftikhar, Faiza Quddus, Navera Nadeem, Iftikhar Ali, Muhammad Usama Raza, Muhammad Zaid, Production of Polyhydroxyalkanoates (pha) by bacillus and pseudomonas on Cheap Carbon Substrates, Brazilian Archives of Biology and Technology, 67, (2024), https://doi.org/10.1590/1678-4324-2024230082
  10. Maciej W. Guzik, Gearóid F. Duane, Shane T. Kenny, Eoin Casey, Paweł Mielcarek, Magdalena Wojnarowska, Kevin E. O’Connor, A polyhydroxyalkanoates bioprocess improvement case study based on four fed-batch feeding strategies, Microbial Biotechnology, 15, 3, (2022), 996-1006 https://doi.org/10.1111/1751-7915.13879
  11. Sharifah Mohammad, Siti Baidurah, Takaomi Kobayashi, Norli Ismail, Cheu Peng Leh, Palm Oil Mill Effluent Treatment Processes—A Review, Processes, 9, 5, (2021), 739 https://doi.org/10.3390/pr9050739
  12. Nurul Atiqah Osman, Farhana Aziz Ujang, Ahmad Muhaimin Roslan, Mohamad Faizal Ibrahim, Mohd Ali Hassan, The effect of Palm Oil Mill Effluent Final Discharge on the Characteristics of Pennisetum purpureum, Scientific Reports, 10, 1, (2020), 6613 https://doi.org/10.1038/s41598-020-62815-0
  13. Salmiati, Mohd Razman Salim, Zaini Ujang, Farrah Aini Dahalan, Gustaf Olsson, Polyhydroxyalkanoates (PHAs) production from complex polymer organic waste using anaerobic and aerobic sequence batch reactor, Journal of Biochemistry, Microbiology and Biotechnology, 2, 2, (2014), 61-66 https://doi.org/10.54987/jobimb.v2i2.152
  14. Isabel Thiele, Lara Santolin, Svea Detels, Riccardo Osele, Peter Neubauer, Sebastian L. Riedel, High-cell-density fed-batch strategy to manufacture tailor-made P(HB-co-HHx) by engineered Ralstonia eutropha at laboratory scale and pilot scale, Microbial Biotechnology, 17, 6, (2024), e14488 https://doi.org/10.1111/1751-7915.14488
  15. Rijuta Ganesh Saratale, Si-Kyung Cho, Ganesh Dattatraya Saratale, Manu Kumar, Ram Naresh Bharagava, Sunita Varjani, Avinash A. Kadam, Gajanan S. Ghodake, Ramasubba Reddy Palem, Sikandar I. Mulla, Dong-Su Kim, Han-Seung Shin, An Overview of Recent Advancements in Microbial Polyhydroxyalkanoates (PHA) Production from Dark Fermentation Acidogenic Effluents: A Path to an Integrated Bio-Refinery, Polymers, 13, 24, (2021), 4297 https://doi.org/10.3390/polym13244297
  16. Giorgia Pagliano, Paola Galletti, Chiara Samorì, Agnese Zaghini, Cristian Torri, Recovery of Polyhydroxyalkanoates From Single and Mixed Microbial Cultures: A Review, Frontiers in Bioengineering and Biotechnology, Volume 9 - 2021, (2021), https://doi.org/10.3389/fbioe.2021.624021
  17. Gabriela J. Pedroso, Desirée M. S. Costa, Lucas T. Felipe Kokuszi, Eduardo B. V. da Silva, Marcos F. O. Cavalcante, Eduardo Junca, Cassio A. O. Moraes, Claus T. Pich, Vânia R. de Lima, Sumbal Saba, Jamal Rafique, Tiago E. A. Frizon, Selenylated indoles: synthesis, effects on lipid membrane properties and DNA cleavage, New Journal of Chemistry, 47, 6, (2023), 2719-2726 https://doi.org/10.1039/d2nj04330k
  18. Luis Getino, Irene García, Alfonso Cornejo, Raúl Mateos, Luisa M. Ariza-Carmona, Natalia Sánchez-Castro, José F. Moran, Elías R. Olivera, Alejandro Chamizo-Ampudia, The Effectiveness of Polyhydroxyalkanoate (PHA) Extraction Methods in Gram-Negative Pseudomonas putida U, Polymers, 17, 2, (2025), 150 https://doi.org/10.3390/polym17020150
  19. Lorena Atarés, Amparo Chiralt, Chelo González-Martínez, Maria Vargas, Production of Polyhydroxyalkanoates for Biodegradable Food Packaging Applications Using Haloferax mediterranei and Agrifood Wastes, Foods, 13, 6, (2024), 950 https://doi.org/10.3390/foods13060950
  20. Nadia Altaee, Gamal A. El-Hiti, Ayad Fahdil, Kumar Sudesh, Emad Yousif, Biodegradation of different formulations of polyhydroxybutyrate films in soil, SpringerPlus, 5, 1, (2016), 762 https://doi.org/10.1186/s40064-016-2480-2
  21. Haithem Aib, Ildiko Czegeny, Ramzi Benhizia, Herta Mária Czédli, Evaluating the Efficiency of Wastewater Treatment Plants in the Northern Hungarian Plains Using Physicochemical and Microbiological Parameters, Water, 16, 24, (2024), 3590 https://doi.org/10.3390/w16243590
  22. Nezha Tahri Joutey, Wifak Bahafid, Hanane Sayel, Naima El Ghachtouli, Biodegradation: Involved Microorganisms and Genetically Engineered Microorganisms, in: R. Chamy (Ed.) Biodegradation - Life of Science, IntechOpen, Rijeka, 2013, https://doi.org/10.5772/56194
  23. Martin Koller, Chapter 1 - Production, properties, and processing of microbial polyhydroxyalkanoate (PHA) biopolyesters, in: S. Das, H.R. Dash (Eds.) Microbial and Natural Macromolecules, Academic Press, 2021, https://doi.org/10.1016/B978-0-12-820084-1.00001-6
  24. Beom-Jung Kang, Jong-Min Jeon, Shashi Kant Bhatia, Do-Hyung Kim, Yung-Hun Yang, Sangwon Jung, Jeong-Jun Yoon, Two-Stage Bio-Hydrogen and Polyhydroxyalkanoate Production: Upcycling of Spent Coffee Grounds, Polymers, 15, 3, (2023), 681 https://doi.org/10.3390/polym15030681
  25. Rawia F. Gamal, Hemmat M. Abdelhady, Taha A. Khodair, Tarek S. El-Tayeb, Enas A. Hassan, Khadiga A. Aboutaleb, Semi-scale production of PHAs from waste frying oil by Pseudomonas fluorescens S48, Brazilian Journal of Microbiology, 44, 2, (2013), https://doi.org/10.1590/S1517-83822013000200034
  26. Manaswini Gundlapalli, Sunantha Ganesan, Polyhydroxyalkanoates (PHAs): Key Challenges in production and sustainable strategies for cost reduction within a circular economy framework, Results in Engineering, 26, (2025), 105345 https://doi.org/10.1016/j.rineng.2025.105345
  27. K. Sudesh, H. Abe, Y. Doi, Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters, Progress in Polymer Science, 25, 10, (2000), 1503-1555 https://doi.org/10.1016/S0079-6700(00)00035-6
  28. Bronwyn Laycock, Peter Halley, Steven Pratt, Alan Werker, Paul Lant, The chemomechanical properties of microbial polyhydroxyalkanoates, Progress in Polymer Science, 39, 2, (2014), 397-442 https://doi.org/10.1016/j.progpolymsci.2013.06.008
  29. Harshini Pakalapati, Chih-Kai Chang, Pau Loke Show, Senthil Kumar Arumugasamy, John Chi-Wei Lan, Development of polyhydroxyalkanoates production from waste feedstocks and applications, Journal of Bioscience and Bioengineering, 126, 3, (2018), 282-292 https://doi.org/10.1016/j.jbiosc.2018.03.016
  30. Patricia Feijoo, Kerly Samaniego-Aguilar, Estefanía Sánchez-Safont, Sergio Torres-Giner, Jose M. Lagaron, Jose Gamez-Perez, Luis Cabedo, Development and Characterization of Fully Renewable and Biodegradable Polyhydroxyalkanoate Blends with Improved Thermoformability, Polymers, 14, 13, (2022), 2527 https://doi.org/10.3390/polym14132527
  31. Karlo Grgurević, Dora Bramberger, Martina Miloloža, Krešimir Stublić, Vesna Ocelić Bulatović, Jasmina Ranilović, Šime Ukić, Tomislav Bolanča, Matija Cvetnić, Marinko Markić, Dajana Kučić Grgić, Producing and Characterizing Polyhydroxyalkanoates from Starch and Chickpea Waste Using Mixed Microbial Cultures in Solid-State Fermentation, Polymers, 16, 23, (2024), 3407 https://doi.org/10.3390/polym16233407
  32. Pinanong Tanikkul, Geraint L. Sullivan, Sarper Sarp, Nipon Pisutpaisal, Biosynthesis of medium chain length polyhydroxyalkanoates (mcl-PHAs) from palm oil, Case Studies in Chemical and Environmental Engineering, 2, (2020), 100045 https://doi.org/10.1016/j.cscee.2020.100045
  33. Ana Rita C. Duarte, Simone S. Silva, João F. Mano, Rui L. Reis, Ionic liquids as foaming agents of semi-crystalline natural-based polymers, Green Chemistry, 14, 7, (2012), 1949-1955 https://doi.org/10.1039/C2GC16652F
  34. Veena Paul, Saloni Rai, Urvashi Vikranta, Alisha Nandan, Aparna Agarwal, Abhishek Dutt Tripathi, Starch-PHA Blend-Based Biopolymers with Potential Food Applications, Starch - Stärke, 76, 11-12, (2024), 2300131 https://doi.org/10.1002/star.202300131
  35. Kjeld W. Meereboer, Manjusri Misra, Amar K. Mohanty, Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites, Green Chemistry, 22, 17, (2020), 5519-5558 https://doi.org/10.1039/d0gc01647k
  36. Martin Koller, Rodolfo Bona, Gerhart Braunegg, Carmen Hermann, Predrag Horvat, Markus Kroutil, Julia Martinz, Jose Neto, Luis Pereira, Paula Varila, Production of Polyhydroxyalkanoates from Agricultural Waste and Surplus Materials, Biomacromolecules, 6, 2, (2005), 561-565 https://doi.org/10.1021/bm049478b
  37. Ailifeire Fulati, Koichiro Uto, Mitsuhiro Ebara, Influences of Crystallinity and Crosslinking Density on the Shape Recovery Force in Poly(ε-Caprolactone)-Based Shape-Memory Polymer Blends, Polymers, 14, 21, (2022), 4740 https://doi.org/10.3390/polym14214740
  38. Guo-Qiang Chen, Qiong Wu, The application of polyhydroxyalkanoates as tissue engineering materials, Biomaterials, 26, 33, (2005), 6565-6578 https://doi.org/10.1016/j.biomaterials.2005.04.036

Last update:

No citation recorded.

Last update: 2025-09-11 15:42:58

No citation recorded.