skip to main content

Synthesis and Characterization of Biodegradable Plastics from Areca Nut Shell Cellulose Incorporated Carboxymethyl Cellulose (CMC) and Glycerol

1Department of Chemical Engineering, Faculty of Engineering, Malikussaleh University, Lhokseumawe, Indonesia

2Center of Excellence Technology, Natural Polymer, and Recycle Plastics, Malikussaleh University, Lhokseumawe, Indonesia

3Department of Renewable Energy Engineering, Faculty of Engineering, Malikussaleh University, Lhokseumawe, Indonesia

4 Department of Chemical Engineering, Faculty of Engineering, Syiah Kuala University, Banda Aceh, Indonesia

5 Faculty of Engineering, Built Environment & Information Technology, SEGi University, Selangor, Malaysia

6 Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Pekan, Pahang, Malaysia

7 Centre for Automotive Engineering, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Pekan, Pahang, Malaysia

View all affiliations
Received: 4 Jul 2025; Revised: 16 Nov 2025; Accepted: 25 Dec 2025; Published: 31 Dec 2025.
Open Access Copyright 2025 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Areca nut shells have a high cellulose content. The potential utilization of areca nut shells as a base material for biodegradable plastics is a key component in the goal of replacing commercial plastics. This study aims to determine the optimal concentration of CMC and glycerol to achieve the best mechanical characteristics of biodegradable plastics. The research method consists of several stages, including the preparation of cellulose from areca nut shells, which involves predelignification and delignification, the synthesis of biodegradable plastic, and the testing of the resulting biodegradable plastic. The mechanical characteristic tests conducted on biodegradable plastics included a tensile strength test (1.27−3.10 MPa), elongation (1.10−1.25%), and Young’s modulus (108.54−281.81 MPa) on biodegradable plastics with CMC (4, 5, 6, and 7%) and 4.5% glycerol. In the functional group analysis, biodegradable plastic forms clusters that bond with water, making soil degradation easier. In the thermal analysis, the most significant weight loss occurred between 422.21°C and 492.87°C, which is the stage of cellulose degradation. The swelling value obtained in the areca nut shell cellulose biodegradable plastic is (25.39-11.17%). The use of glycerol affects the value of plastic resistance to water. Estimated degradation times were 45–63 days (3% glycerol), 81–96 days (3.5%), 75–90 days (4%), and 69–84 days (4.5%). Based on ASTM D6400 standards, the material demonstrates biodegradability, with the potential to meet the required degradation thresholds for bioplastics.

Fulltext View|Download
Keywords: areca nut shells; cellulose; CMC; glycerol; biodegradable plastic

Article Metrics:

  1. Afonso D. Macheca, Bridget Mutuma, José L. Adalima, Emmanuel Midheme, Luís H. M. Lúcas, Valentine K. Ochanda, Sabelo D. Mhlanga, Perspectives on Plastic Waste Management: Challenges and Possible Solutions to Ensure Its Sustainable Use, Recycling, 9, 5, (2024), 77 https://doi.org/10.3390/recycling9050077
  2. Khaoula Houssini, Jinhui Li, Quanyin Tan, Complexities of the global plastics supply chain revealed in a trade-linked material flow analysis, Communications Earth & Environment, 6, 1, (2025), 257 https://doi.org/10.1038/s43247-025-02169-5
  3. Michele Michelin, Arlete M. Marques, Lorenzo M. Pastrana, José A. Teixeira, Miguel A. Cerqueira, Carboxymethyl cellulose-based films: Effect of organosolv lignin incorporation on physicochemical and antioxidant properties, Journal of Food Engineering, 285, (2020), 110107 https://doi.org/10.1016/j.jfoodeng.2020.110107
  4. Himanshu Gupta, Harish Kumar, Mohit Kumar, Avneesh Kumar Gehlaut, Ankur Gaur, Sadhana Sachan, Jin-Won Park, Synthesis of biodegradable films obtained from rice husk and sugarcane bagasse to be used as food packaging material, Environmental Engineering Research, 25, 4, (2020), 506-514 https://doi.org/10.4491/eer.2019.191
  5. Andi Dirpan, Andi F. Ainani, Muspirah Djalal, A Review on Biopolymer-Based Biodegradable Film for Food Packaging: Trends over the Last Decade and Future Research, Polymers, 15, 13, (2023), 2781 https://doi.org/10.3390/polym15132781
  6. Mst Sarmina Yeasmin, Md Ibrahim H. Mondal, Synthesis of highly substituted carboxymethyl cellulose depending on cellulose particle size, International Journal of Biological Macromolecules, 80, (2015), 725-731 https://doi.org/10.1016/j.ijbiomac.2015.07.040
  7. M. Z. H. Khan, M. A. R. Sarkar, Forhad Ibne Al Imam, M. Zahid H. Khan, Raimo O. Malinen, Paper Making from Banana Pseudo-Stem: Characterization and Comparison, Journal of Natural Fibers, 11, 3, (2014), 199-211 https://doi.org/10.1080/15440478.2013.874962
  8. Workiye Getnet Abera, Ramachandran Kasirajan, Samuel Latebo Majamo, Synthesis and characterization of bioplastic film from banana (Musa Cavendish species) peel starch blending with banana pseudo-stem cellulosic fiber, Biomass Conversion and Biorefinery, 14, 17, (2024), 20419-20440 https://doi.org/10.1007/s13399-023-04207-8
  9. Zhuolun Jiang, To Ngai, Recent Advances in Chemically Modified Cellulose and Its Derivatives for Food Packaging Applications: A Review, Polymers, 14, 8, (2022), 1533 https://doi.org/10.3390/polym14081533
  10. Simona Zuppolini, Ahmed Salama, Iriczalli Cruz-Maya, Vincenzo Guarino, Anna Borriello, Cellulose Amphiphilic Materials: Chemistry, Process and Applications, Pharmaceutics, 14, 2, (2022), 386 https://doi.org/10.3390/pharmaceutics14020386
  11. Nicolas Le Moigne, Belkacem Otazaghine, Stéphane Corn, Hélène Angellier-Coussy, Anne Bergeret, Surfaces and Interfaces in Natural Fibre Reinforced Composites: Fundamentals, Modifications and Characterization, Springer, 2018, ^ https://doi.org/10.1007/978-3-319-71410-3
  12. Huai N. Cheng, Atanu Biswas, Gary Kuzniar, Sanghoon Kim, Zengshe Liu, Zhongqi He, in: Polymers, 2024, p. 1554 https://doi.org/10.3390/polym16111554
  13. Md S. Rahman, Md S. Hasan, Ashis S. Nitai, Sunghyun Nam, Aneek K. Karmakar, Md S. Ahsan, Muhammad J. A. Shiddiky, Mohammad B. Ahmed, Recent Developments of Carboxymethyl Cellulose, Polymers, 13, 8, (2021), 1345 https://doi.org/10.3390/polym13081345
  14. Łukasz Łopusiewicz, Paweł Kwiatkowski, Emilia Drozłowska, Paulina Trocer, Mateusz Kostek, Mariusz Śliwiński, Magdalena Polak-Śliwińska, Edward Kowalczyk, Monika Sienkiewicz, Preparation and Characterization of Carboxymethyl Cellulose-Based Bioactive Composite Films Modified with Fungal Melanin and Carvacrol, Polymers, 13, 4, (2021), 499 https://doi.org/10.3390/polym13040499
  15. Cai-Li Song, Jofry B. Othman, Synthesis and Characterization of Lignin-Incorporated Carboxymethyl Cellulose (CMC) Films from Oil Palm Lignocellulosic Waste, Processes, 10, 11, (2022), 2205 https://doi.org/10.3390/pr10112205
  16. Veronika Bátori, Magnus Lundin, Dan Åkesson, Patrik R. Lennartsson, Mohammad J. Taherzadeh, Akram Zamani, The Effect of Glycerol, Sugar, and Maleic Anhydride on Pectin-Cellulose Thin Films Prepared from Orange Waste, Polymers, 11, 3, (2019), 392 https://doi.org/10.3390/polym11030392
  17. Özge Süfer, Ayşe Nur Tonay, Yasemin Çelebi, Berrak Delikanlı Kıyak, Azime Özkan Karabacak, Gülşah Çalışkan Koç, Samiye Adal, Seema Ramniwas, Sarvesh Rustagi, Ravi Pandiselvam, Areca nut husk lignocellulosic fibers: A sustainable alternative to synthetic textiles, European Polymer Journal, 221, (2024), 113531 https://doi.org/10.1016/j.eurpolymj.2024.113531
  18. Vishal Tyagi, Archana Thakur, Applications of biodegradable carboxymethyl cellulose-based composites, Results in Materials, 20, (2023), 100481 https://doi.org/10.1016/j.rinma.2023.100481
  19. Sakshi S. Kamath, Dhanalakshmi Sampathkumar, Basavaraju Bennehalli, A review on natural areca fibre reinforced polymer composite materials, Ciência & Tecnologia dos Materiais, 29, 3, (2017), 106-128 https://doi.org/10.1016/j.ctmat.2017.10.001
  20. K. Gayathri, N. Malathi, V. Gayathri, Pooja Narain Adtani, K. Ranganathan, Molecular pathways of oral submucous fibrosis and its progression to malignancy, Archives of Oral Biology, 148, (2023), 105644 https://doi.org/10.1016/j.archoralbio.2023.105644
  21. Andrey D. Volgin, Alim Bashirzade, Tamara G. Amstislavskaya, Oleg A. Yakovlev, Konstantin A. Demin, Ying-Jui Ho, Dongmei Wang, Vadim A. Shevyrin, Dongni Yan, Zhichong Tang, Jingtao Wang, Mengyao Wang, Erik T. Alpyshov, Nazar Serikuly, Edina A. Wappler-Guzzetta, Anton M. Lakstygal, Allan V. Kalueff, DARK Classics in Chemical Neuroscience: Arecoline, ACS Chemical Neuroscience, 10, 5, (2019), 2176-2185 https://doi.org/10.1021/acschemneuro.8b00711
  22. Rozanna Dewi, Novi Sylvia, Muhammad Subhan, Budhi S. Kusuma, Aldila Ananda, Medyan Riza, Januar P. Siregar, Choon K. Chan, Tezara Cionita, Elsherif E. Abdelrahman, Effect of Polylactic Acid (PLA) Blends on Cellulose Degradable Plastics from the Lotus Stem (Nelumbo nucifera), Polymers, 17, 17, (2025), 2281 https://doi.org/10.3390/polym17172281
  23. ASTM D638-14, Standard Test Method for Tensile Properties of Plastics, ASTM, West Conshohocken, PA, USA, 2022, https://doi.org/10.1520/D0638-14
  24. ASTM D2765-16, Standard Test Methods for Determination of Gel Content and Swell Ratio of Crosslinked Ethylene Plastics, ASTM, West Conshohocken, PA, USA, 2024, https://doi.org/10.1520/D2765-16
  25. ASTM D5988-18, Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in Soil, ASTM, West Conshohocken, PA, USA, 2021, https://doi.org/10.1520/D5988-18
  26. S. Agustin, M. N. Cahyanto, E. T. Wahyuni, Supriyadi, Effect of glycerol plasticizer on the structure and characteristics of bacterial cellulose-based biocomposite films, IOP Conference Series: Earth and Environmental Science, 1377, 1, (2024), 012046 https://doi.org/10.1088/1755-1315/1377/1/012046
  27. Katiany Mansur Tavares, Adriana de Campos, Milene Corso Mitsuyuki, Bruno Ribeiro Luchesi, José Manoel Marconcini, Corn and cassava starch with carboxymethyl cellulose films and its mechanical and hydrophobic properties, Carbohydrate Polymers, 223, (2019), 115055 https://doi.org/10.1016/j.carbpol.2019.115055
  28. Dewi Wahyuningtyas, Arwitra Dinata, Combination of carboxymethyl cellulose (CMC) - Corn starch edible film and glycerol plasticizer as a delivery system of diclofenac sodium, AIP Conference Proceedings, 1977, 1, (2018), 030032 https://doi.org/10.1063/1.5042952
  29. J. Tarique, S. M. Sapuan, A. Khalina, Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers, Scientific Reports, 11, 1, (2021), 13900 https://doi.org/10.1038/s41598-021-93094-y
  30. Abdulrahman A. B. A. Mohammed, Abdoulhdi A. Borhana Omran, Zaimah Hasan, R. A. Ilyas, S. M. Sapuan, Wheat Biocomposite Extraction, Structure, Properties and Characterization: A Review, Polymers, 13, 21, (2021), 3624 https://doi.org/10.3390/polym13213624
  31. Alimin Mahyudin, Syukri Arief, Hairul Abral, Emriadi Emriadi, Mulda Muldarisnu, Mila Puteri Artika, Mechanical Properties and Biodegradability of Areca Nut Fiber-reinforced Polymer Blend Composites, Evergreen Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 07, 03, (2020), 366-372 https://doi.org/10.5109/4068618
  32. D. Kumar, S. Rajendra Boopathy, Mechanical and Thermal Properties of Horn Fibre Reinforced Polypropylene Composites, Procedia Engineering, 97, (2014), 648-659 https://doi.org/10.1016/j.proeng.2014.12.294
  33. Binod Shrestha, Khagendra Chapain, Sambridhi Shah, Rajesh Pandit, Starch/ Polyvinyl Alcohol (PVA) Blend Bioplastics: Synthesis and Physicochemical Properties, Journal of Nepal Chemical Society, 43, 2, (2023), 103-109 https://doi.org/10.3126/jncs.v43i2.53349
  34. Pornchai Rachtanapun, Nithiya Rattanapanone, Synthesis and characterization of carboxymethyl cellulose powder and films from Mimosa pigra, Journal of Applied Polymer Science, 122, 5, (2011), 3218-3226 https://doi.org/10.1002/app.34316
  35. Sri Hidayati, Zulferiyenni, Ulfa Maulidia, Wisnu Satyajaya, Sutopo Hadi, Effect of glycerol concentration and carboxy methyl cellulose on biodegradable film characteristics of seaweed waste, Heliyon, 7, 8, (2021), https://doi.org/10.1016/j.heliyon.2021.e07799
  36. Rozanna Dewi, Novi Sylvia, Zulnazri Zulnazri, Herman Fithra, Medyan Riza, Januar P. Siregar, Tezara Cionita, Deni F. Fitriyana, Samsudin Anis, in: Polymers, 2024, p. 2384 https://doi.org/10.3390/polym16162384
  37. Sara Sayanjali, Yuzhou Lu, Kate Howell, Extraction and Characterization of Cellulose from Broccoli Stems as a New Biopolymer Source for Producing Carboxymethyl Cellulose Films, International Journal of Food Science, 2024, 1, (2024), 7661288 https://doi.org/10.1155/2024/7661288
  38. Qunyi Tong, Qian Xiao, Loong-Tak Lim, Effects of glycerol, sorbitol, xylitol and fructose plasticisers on mechanical and moisture barrier properties of pullulan–alginate–carboxymethylcellulose blend films, International Journal of Food Science and Technology, 48, 4, (2013), 870-878 https://doi.org/10.1111/ijfs.12039
  39. Steven Steven, Anna N. Fauza, Yati Mardiyati, Sigit P. Santosa, Silvia M. Shoimah, Facile Preparation of Cellulose Bioplastic from Cladophora sp. Algae via Hydrogel Method, Polymers, 14, 21, (2022), 4699 https://doi.org/10.3390/polym14214699
  40. Dan Zhao, Junchao Huang, Yi Zhong, Kai Li, Lina Zhang, Jie Cai, High-Strength and High-Toughness Double-Cross-Linked Cellulose Hydrogels: A New Strategy Using Sequential Chemical and Physical Cross-Linking, Advanced Functional Materials, 26, 34, (2016), 6279-6287 https://doi.org/10.1002/adfm.201601645
  41. Aina A. Arman Alim, Azizah Baharum, Siti S. Mohammad Shirajuddin, Farah H. Anuar, Blending of Low-Density Polyethylene and Poly(Butylene Succinate) (LDPE/PBS) with Polyethylene–Graft–Maleic Anhydride (PE–g–MA) as a Compatibilizer on the Phase Morphology, Mechanical and Thermal Properties, Polymers, 15, 2, (2023), 261 https://doi.org/10.3390/polym15020261
  42. Muhammad Harris, Johan Potgieter, Sudip Ray, Richard Archer, Khalid Mahmood Arif, Polylactic acid and high-density polyethylene blend: Characterization and application in additive manufacturing, Journal of Applied Polymer Science, 137, 48, (2020), 49602 https://doi.org/10.1002/app.49602
  43. Nuanchai Khotsaeng, Wilaiwan Simchuer, Thanonchat Imsombut, Prasong Srihanam, Effect of Glycerol Concentrations on the Characteristics of Cellulose Films from Cattail (Typha angustifolia L.) Flowers, Polymers, 15, 23, (2023), 4535 https://doi.org/10.3390/polym15234535
  44. Rungsiri Suriyatem, Nichaya Noikang, Tamolwan Kankam, Kittisak Jantanasakulwong, Noppol Leksawasdi, Yuthana Phimolsiripol, Chayatip Insomphun, Phisit Seesuriyachan, Thanongsak Chaiyaso, Pensak Jantrawut, Sarana R. Sommano, Thi M. Ngo, Pornchai Rachtanapun, Physical Properties of Carboxymethyl Cellulose from Palm Bunch and Bagasse Agricultural Wastes: Effect of Delignification with Hydrogen Peroxide, Polymers, 12, 7, (2020), 1505 https://doi.org/10.3390/polym12071505
  45. Mauricio Yáñez-S, Betty Matsuhiro, Santiago Maldonado, Raúl González, Jorge Luengo, Omar Uyarte, Daniel Serafine, Sergio Moya, Julio Romero, Rodrigo Torres, Marcelo J. Kogan, Carboxymethylcellulose from bleached organosolv fibers of Eucalyptus nitens: synthesis and physicochemical characterization, Cellulose, 25, 5, (2018), 2901-2914 https://doi.org/10.1007/s10570-018-1766-7
  46. Rungsiri Suriyatem, Rafael A. Auras, Pornchai Rachtanapun, Utilization of Carboxymethyl Cellulose from Durian Rind Agricultural Waste to Improve Physical Properties and Stability of Rice Starch-Based Film, Journal of Polymers and the Environment, 27, 2, (2019), 286-298 https://doi.org/10.1007/s10924-018-1343-z
  47. Shanzhi Xin, Haiping Yang, Yingquan Chen, Mingfa Yang, Lei Chen, Xianhua Wang, Hanping Chen, Chemical structure evolution of char during the pyrolysis of cellulose, Journal of Analytical and Applied Pyrolysis, 116, (2015), 263-271 https://doi.org/10.1016/j.jaap.2015.09.002
  48. Francesca Cerciello, Carmela Russo, Osvalda Senneca, Renata Migliaccio, Maria Maddalena Oliano, Barbara Apicella, Volatile species and polycyclic aromatic hydrocarbons upon thermal (oxidative) decomposition of lignocellulosic biomass: The insightful case of reconstituted cast-leaf tobacco, Journal of Analytical and Applied Pyrolysis, 189, (2025), 107062 https://doi.org/10.1016/j.jaap.2025.107062
  49. Wiriya Thongsomboon, Yodthong Baimark, Prasong Srihanam, Valorization of Cellulose-Based Materials from Agricultural Waste: Comparison between Sugarcane Bagasse and Rice Straw, Polymers, 15, 15, (2023), 3190 https://doi.org/10.3390/polym15153190
  50. S. N. Fauziyah, A. S. Mubarak, D. Y. Pujiastuti, Application of glycerol on bioplastic based carrageenan waste cellulose on biodegradability and mechanical properties bioplastic, IOP Conference Series: Earth and Environmental Science, 679, 1, (2021), 012005 https://doi.org/10.1088/1755-1315/679/1/012005
  51. Henry C. Obasi, Issac O. Igwe, Cassava Starch-Mixed Polypropylene Biodegradable Polymer: Preparation, Characterization and Effects of Biodegradation Products on Growth of Plants, International Journal of Science and Research, 3, 7, (2014), 802-807
  52. Bambang Admadi Harsojuwono, I. Wayan Arnata, Amna Hartiati, Yohanes Setiyo, Sayi Hatiningsih, Luh Suriati, The Improvement of the Modified Starch—Glucomannan—Polyvinyl Alcohol Biothermoplastic Composite Characteristics With Polycaprolactone and Anhydride Maleic Acid, Frontiers in Sustainable Food Systems, Volume 6 - 2022, (2022), https://doi.org/10.3389/fsufs.2022.844485
  53. Khadijah N. Zahri, Azham Zulkharnain, Claudio Gomez-Fuentes, Suriana Sabri, Khalilah Abdul Khalil, Peter Convey, Siti A. Ahmad, The Use of Response Surface Methodology as a Statistical Tool for the Optimisation of Waste and Pure Canola Oil Biodegradation by Antarctic Soil Bacteria, Life, 11, 5, (2021), 456 https://doi.org/10.3390/life11050456
  54. João R. Pires, Victor G. Souza, Pablo Fuciños, Lorenzo Pastrana, Ana L. Fernando, Methodologies to Assess the Biodegradability of Bio-Based Polymers—Current Knowledge and Existing Gaps, Polymers, 14, 7, (2022), 1359 https://doi.org/10.3390/polym14071359
  55. Adele Folino, Domenica Pangallo, Paolo Salvatore Calabrò, Assessing bioplastics biodegradability by standard and research methods: Current trends and open issues, Journal of Environmental Chemical Engineering, 11, 2, (2023), 109424 https://doi.org/10.1016/j.jece.2023.109424

Last update:

No citation recorded.

Last update: 2026-01-14 16:02:53

No citation recorded.