skip to main content

Computational Design and Evaluation of Formaldehyde-Free Modified Tannins for Enhanced Copper Ion Removal

1Chemistry Department, Faculty of Science and Mathematics, Satya Wacana Christian University, Salatiga, Central Java, Indonesia

2Chemistry Department, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia

Received: 4 Sep 2025; Revised: 20 Nov 2025; Accepted: 28 Nov 2025; Published: 31 Dec 2025.
Open Access Copyright 2025 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
Pollution from heavy metal ions, such as copper (Cu2+), in textile wastewater poses a significant environmental challenge. Modified condensed tannins (TyD) show promise as coagulants for heavy metal removal, but current formaldehyde-based modification methods are concerning due to formaldehyde’s carcinogenic nature. This in silico study aimed to optimize TyD design by replacing formaldehyde with safer alternatives: acetone (TyDA), ethyl methyl ketone (TyDE), and benzaldehyde (TyDB), and evaluating their interaction stability with Cu2+ ions. Using Density Functional Theory (DFT) with a B3LYP-D3/6-31G(d,p) basis set, this study performed calculations for interaction energy (Ei) and complex activity (HOMO-LUMO, affinity, electronegativity, energy gap). The results indicated that the TyDB-1 design exhibited the most optimal interaction energy with Cu2+ ions, showing an Ei value of −943.39 kJ.mol−1 for TyD…Cu2+ and −1,271.86 kJ.mol−1 for TyD…Cu2+…TyD interactions. In the single TyD…The Cu2+ complex, TyDB-1, demonstrated superior stability, stronger binding, and better Cu2+ attraction compared to the formaldehyde-modified TyDF, despite a higher energy gap (1.354 eV vs. 1.090 eV). A higher HOMO-LUMO energy gap indicates reduced electronic reactivity and enhanced complex stability, signifying that TyDB-1 forms a more stable coordination with Cu2+ ions. However, in the presence of an additional TyD molecule (TyD…Cu2+…TyD), TyDB-1, while showing strong bonds and good attraction, was found to be more reactive than TyDF. Overall, TyDB-1 represents a promising, safer alternative for Cu2+ coagulation, highlighting the utility of computational chemistry in designing high-performance coagulants.
Fulltext View|Download
Keywords: Modified tannin; Cu²⁺ coagulation; in silico; DFT; Coagulation optimization; Formaldehyde-free
Funding: Satya Wacana Christian University under contract 103/RIK-RPM/09/2024

Article Metrics:

  1. Azreen Ibrahim, Abu Zahrim Yaser, Junidah Lamaming, Synthesising tannin-based coagulants for water and wastewater application: A review, Journal of Environmental Chemical Engineering, 9, 1, (2021), 105007 https://doi.org/10.1016/j.jece.2020.105007
  2. Lorena Lugo, Alison Martín, John Diaz, Alejandro Pérez-Flórez, Crispin Celis, Implementation of Modified Acacia Tannin by Mannich Reaction for Removal of Heavy Metals (Cu, Cr and Hg), Water, 12, 2, (2020), 352 https://doi.org/10.3390/w12020352
  3. Isabella T. Tomasi, Cláudia A. Machado, Rui A. R. Boaventura, Cidália M. S. Botelho, Sílvia C. R. Santos, Tannin-based coagulants: Current development and prospects on synthesis and uses, Science of The Total Environment, 822, (2022), 153454 https://doi.org/10.1016/j.scitotenv.2022.153454
  4. Ahmad K. Badawi, Reda S. Salama, Mohamed Mokhtar M. Mostafa, Natural-based coagulants/flocculants as sustainable market-valued products for industrial wastewater treatment: a review of recent developments, RSC Advances, 13, 28, (2023), 19335-19355 https://doi.org/10.1039/D3RA01999C
  5. Isabella T. Tomasi, Sílvia C. R. Santos, Andreia Ribeiro, Vera Homem, Rui A. R. Boaventura, Cidália M. S. Botelho, Coagulants from chestnut shell tannins - Synthesis, characterization and performance on water treatment, Journal of Water Process Engineering, 69, (2025), 106818 https://doi.org/10.1016/j.jwpe.2024.106818
  6. Kinga Grenda, Julien Arnold, José A. F. Gamelas, Maria G. Rasteiro, Up-scaling of tannin-based coagulants for wastewater treatment: performance in a water treatment plant, Environmental Science and Pollution Research, 27, 2, (2020), 1202-1213 https://doi.org/10.1007/s11356-018-2570-5
  7. Elisandra C. Lopes, Sílvia C. R. Santos, Ariana M. A. Pintor, Rui A. R. Boaventura, Cidália M. S. Botelho, Evaluation of a tannin-based coagulant on the decolorization of synthetic effluents, Journal of Environmental Chemical Engineering, 7, 3, (2019), 103125 https://doi.org/10.1016/j.jece.2019.103125
  8. Camila de Oliveira, Viviane Trevisan, Everton Skoronski, Application of tannin-based coagulant for high-range turbidity surface water clarification, Journal of Water, Sanitation and Hygiene for Development, 12, 11, (2022), 803-815 https://doi.org/10.2166/washdev.2022.120
  9. Kinga Grenda, Julien Arnold, David Hunkeler, José A. F. Gamelas, Maria G. Rasteiro, Tannin-based coagulants from laboratory to pilot plant scales for coloured wastewater treatment, BioResources, 13, 2, (2018), 2727-2747 https://doi.org/10.15376/biores.13.2.2727-2747
  10. Grazielle Machado, Cláudia A. B. dos Santos, Júlia Gomes, Douglas Faria, Fernando Santos, Rogerio Lourega, Chemical modification of tannins from Acacia mearnsii to produce formaldehyde free flocculant, Science of The Total Environment, 745, (2020), 140875 https://doi.org/10.1016/j.scitotenv.2020.140875
  11. Marcia P. M. Costa, Letícia M. Prates, Leonardo Baptista, Maurício T. M. Cruz, Ivana L. M. Ferreira, Interaction of polyelectrolyte complex between sodium alginate and chitosan dimers with a single glyphosate molecule: A DFT and NBO study, Carbohydrate Polymers, 198, (2018), 51-60 https://doi.org/10.1016/j.carbpol.2018.06.052
  12. Ferid Hammami, Houcine Ghalla, Salah Nasr, Intermolecular hydrogen bonds in urea–water complexes: DFT, NBO, and AIM analysis, Computational and Theoretical Chemistry, 1070, (2015), 40-47 https://doi.org/10.1016/j.comptc.2015.07.018
  13. Melissa B. Agustin, Bashir Ahmmad, Shanna Marie M. Alonzo, Famille M. Patriana, Bioplastic based on starch and cellulose nanocrystals from rice straw, Journal of Reinforced Plastics and Composites, 33, 24, (2014), 2205-2213 https://doi.org/10.1177/0731684414558325
  14. Sitti Rahmawati, Cynthia Linaya Radiman, Muhamad Abdulkadir Martoprawiro, Density Functional Theory (DFT) and Natural Bond Orbital (NBO) Analysis of Intermolecular Hydrogen Bond Interaction in "Phosphorylated Nata De Coco - Water", Indonesian Journal of Chemistry, 18, 1, (2018), 173-178 https://doi.org/10.22146/ijc.25170
  15. Bhabesh Chandra Deka, Pradip Kr Bhattacharyya, DFT study on host-guest interaction in chitosan–amino acid complexes, Computational and Theoretical Chemistry, 1110, (2017), 40-49 https://doi.org/10.1016/j.comptc.2017.03.036
  16. Eliceo Cortes, Edgar Márquez, José R. Mora, Esneyder Puello, Norma Rangel, Aldemar De Moya, Jorge Trilleras, in: Processes, 2019, p. 396 http://doi.org/10.3390/pr7070396
  17. Anselm H. C. Horn, Essentials of Computational Chemistry, Theories and Models by Christopher J. Cramer. Wiley: Chichester, England., Journal of Chemical Information and Computer Sciences, 43, 5, (2003), 1720-1720 https://doi.org/10.1021/ci010445m
  18. Christopher J. Cramer, Essentials of Computational Chemistry: Theories and Models, John Wiley & Sons, 2013,
  19. Charles M. Quinn, Computational Quantum Chemistry: An Interactive Introduction to Basis Set Theory, Elsevier, 2002,
  20. Parsaoran Siahaan, Tri Windarti, Struktur Molecular-Mikro Material: Pengantar Kimia Supramolekul dan Kimia Nano, Badan Penerbit UNDIP Semarang, Semarang, 2009,
  21. James B. Foresman, Aeleen Frisch, in, Gaussian Inc., Pittsburgh, 1996,
  22. W. A. Arismendi, Andrés E. Ortiz-Ardila, C. V. Delgado, Lorena Lugo, Luis G. Sequeda-Castañeda, Crispín A. Celis-Zambrano, Modified tannins and their application in wastewater treatment, Water Science and Technology, 78, 5, (2018), 1115-1128 https://doi.org/10.2166/wst.2018.336
  23. Linus Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, Cornell University Press, 1960,
  24. Peter William Atkins, Julio De Paula, James Keeler, Atkins' Physical Chemistry, Oxford University Press, 2023,
  25. N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd ed., Butterworth-Heinemann, 1997,
  26. Francis A. Carey, Richard J. Sundberg, Advanced Organic Chemistry: Part A: Structure and Mechanisms, Springer Science & Business Media, 2007,
  27. Renata Ferreira Santana, Renata Cristina Ferreira Bonomo, Olga Reinert Ramos Gandolfi, Luciano Brito Rodrigues, Leandro Soares Santos, Ana Clarissa dos Santos Pires, Cristiane Patrícia de Oliveira, Rafael da Costa Ilhéu Fontan, Cristiane Martins Veloso, Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol, Journal of Food Science and Technology, 55, 1, (2018), 278-286 http://doi.org/10.1007/s13197-017-2936-6
  28. Zhaohui Dan, Yuekuan Zhou, Chapter 4 - Integrated energy flexible building and e-mobility with demand-side management and model predictive control, in: Y. Zhou, J. Yang, G. Zhang, P.D. Lund (Eds.) Advances in Digitalization and Machine Learning for Integrated Building-Transportation Energy Systems, Elsevier, 2024, https://doi.org/10.1016/B978-0-443-13177-6.00011-4
  29. Parsaoran Siahaan, Nurwarrohman Andre Sasongko, Retno Ariadi Lusiana, Vivitri Dewi Prasasty, Muhamad Abdulkadir Martoprawiro, The validation of molecular interaction among dimer chitosan with urea and creatinine using density functional theory: In application for hemodyalisis membrane, International Journal of Biological Macromolecules, 168, (2021), 339-349 https://doi.org/10.1016/j.ijbiomac.2020.12.052
  30. K. Kuang, K. Easler, Fuel Cell Electronics Packaging, Springer New York, New York, 2007, https://doi.org/10.1007/978-0-387-47324-6

Last update:

No citation recorded.

Last update: 2026-01-13 11:54:56

No citation recorded.