skip to main content

FORECASTING COVID-19 IN INDONESIA WITH VARIOUS TIME SERIES MODELS

*Gumgum Darmawan  -  Department of Mathematics, Universitas Gadjah Mada, Indonesia
Dedi Rosadi  -  Department of Mathematics, Universitas Gadjah Mada, Indonesia
Budi Nurani Ruchjana  -  Department of Mathematics, Universitas Padjajaran, Indonesia
Resa Septiani Pontoh  -  Department of Statistics, Universitas Padjajaran, Indonesia
Asrirawan Asrirawan  -  Universitas Sulawesi Barat, Indonesia
Wirawan Setialaksana  -  Universitas Negeri Makassar, Indonesia
Open Access Copyright (c) 2022 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
In this study, Covid-19 modeling in Indonesia is carried out using a time series model. The time series model used is the time series model for discrete data. These models consist of Feedforward Neural Network (FFNN), Error, Trend, and Seasonal (ETS), Singular Spectrum Analysis (SSA), Fuzzy Time Series (FTS), Generalized Autoregression Moving Average (GARMA), and Bayesian Time Series. Based on the results of forecast accuracy calculation using MAPE (Mean Absolute Percentage Error) as model evaluation for confirmed data, the most accurate case models is the bayesian model of 0.04%, while all recovered cases yield MAPE 0.05%, except for FTS = 0.06%. For data for death cases SSA and Bayesian Models, the best with MAPE is 0.07%.
Fulltext View|Download
Keywords: Covid-19; Singular Spectrum Analysis; FFNN; GARMA; FTS

Article Metrics:

  1. Albarracin, O. Y. E., Alencar, A.P., & Ho, L. L. 2019. Generalized Autoregressive and Moving Average Models: Multicollinearity, Interpretation, and a New Modified Model. Journal of Statistical Computation and Simulation, 89(10), 1819-1840. doi: 10.1080/00949655.2019.1599892
  2. Arifin, S. 2020. Dinamika Perubahan Relasi Kiai Santri pada 'Ngaji Online' Di Masa Pagebluk Covid-19. Jurnal Kependudukan Indonesia, 1, 75-80
  3. Benjamin. M. A., Rigby, R. A., & Stasinopoulos, D. M. 2003. Generalized Autoregressive Moving Average Models. Journal of the American Statistical Association, Vol. 98, Issue 461, 37–41. doi: 10.1198/016214503388619238
  4. Chen, S-M. 1996. Forecasting Enrollments Based on Fuzzy Time Series. Fuzzy Sets and System, 81(3), pp. 311–319
  5. Darmawan, G., Rosadi, D., & Ruchjana, B.N. 2021a. Autocorrelation Analysis of Covid-19 based on Hijri Calendar, Journal of Physics: Conference Series, 1918(4), 042004
  6. Darmawan, G., Rosadi, D., & Ruchjana, B.N. 2021b. Covid-19 Daily Forecasting During Ramadhan in Countries with High Muslim Population. Journal of Physics: Conference Series, 1722(1), 12092
  7. Fauziyyah, A. K. 2020. Analisis Sentimen Pandemi Covid-19 pada Streaming Twitter dengan Text Mining Python. Jurnal Ilmiah SINUS, 18(2), 31
  8. Golyandina, N. E. & Zhigljavsky, A. 2013. Singular Spectrum Analysis for Time Series. Berlin Heidelberg: Springer
  9. Golyandina, N. E. & Korobeynikov, A. 2014. Basic Singular Spectrum Analysis and forecasting with R. Computational Statistics and Data Analysis. Elsevier B.V., 71, 934–954
  10. Ghosh, J. & Clyde, M. A. 2011. Rao–Blackwellization for Bayesian Variable Selection and Model Averaging in Linear and Binary Regression: A Novel Data Augmentation Approach. Journal of the American Statistical Association, 106(495), pp. 1041–1052. doi: 10.1198/jasa.2011.tm10518
  11. Han, T. T. N. & Nghi, D. H. 2016. Package Analyze TS. https://cran.microsoft.com/snapshot/ 2016-04-05/web/packages/AnalyzeTS/AnalyzeTS.pdf
  12. Herlawati, H. 2020. COVID-19 Spread Pattern Using Support Vector Regression. PIKSEL Penelit. Ilmu Komput. Sist. Embed. Log., 8(1), 67–74
  13. Hutahaean, H., Silalahi, B.S., & Simanjuntak, L. Z. 2020. Spiritualitas Pandemik: Tinjauan Fenomenologi Ibadah di Rumah. Evangelikal: Jurnal Teologi Injil dan Pembinaan Warga Jemaat, 4(2),234
  14. Hyndman, R. 2008. Forecasting with Exponential Smoothing, The State Space Approach. Berlin Heidelberg: Springer
  15. Korobeynikov, A. A., Shlemov, A., Usevich, K., Golyandina, N., & Korobeynikov, M. A. 2016. Package ‘ Rssa
  16. Nuraini, N., Khairudin, K. & Apri, M. 2020. Modeling Simulation of Covid-19 in Indonesia based on Early Endemic Data. Communication in Biomedical Science, 3(1), 1-8
  17. T. Package et al., “Package ‘ AnalyzeTS ,’” 2019
  18. T. Package, T. Applied, T. Series, and A. W. Woodward, “Package ‘ tswge ,’” 2016
  19. Parhusip, H. A. 2020. Study on Covid-19 in the World and Indonesia Using Regression Model of SVM, Bayesian Ridge, and Gaussian. Jurnal Ilmiah Sains, 20(2), 49
  20. Singh, S. R. 2008. A Computational Method of Forecasting Based on Fuzzy Time Series, Mathematics and Computers in Simulations, 79(3), 539–554. doi: 10.1016/j.matcom.2008.02.026
  21. Suhartono, S. 2007. Feedforward Neural Networks. Disertasi Departemen Matematika Universitas Gadjah Mada
  22. Linton, N. M., Kobayashi, T., Yang, Y., Hayashi, K., Akhmetzhanov, A.R., Jung, S-M., Yuan, B., Kinoshita, R., & Nishiura, H. 2020. Incubation Period and other Epidemiological Characteristics of 2019 Novel Corona Virus infections with Right Truncation: A Statistical Analysis of Publicly Available Case Data. Journal of Clinical Medicine, 9(2), 538
  23. Utami, T. A. & Lahdji, A. Modeling of Local Polynomial Kernel Nonparametric Regression for Covid Daily Cases in Semarang City, Indonesia. 2022. Media Statistika, 14(2), 206–215
  24. Woodward, W. 2016. tswge: Applied Time Series Analysis. https://cran.r-project.org/web/packages/tswge/index.html
  25. Zeger, S. L. & Qaqish, B. 1988. Markov Regression Models for Time Series: A Quasi-Likelihood Approach. 44(4), pp. 1019–1031

Last update:

No citation recorded.

Last update: 2024-11-26 09:49:08

No citation recorded.