skip to main content

ANALYSIS OF MULTILEVEL STRUCTURAL EQUATION MODELING WITH GENERALIZED STRUCTURED COMPONENT ANALYSIS METHOD

*Fitri Amanah  -  Master of Mathematics Study Programme, Universitas Gadjah Mada, Yogyakarta, Indonesia
Abdurakhman Abdurakhman  -  Department of Mathematics, Universitas Gadjah Mada, Yogyakarta, Indonesia
Open Access Copyright (c) 2024 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Generalized Structured Component Analysis (GSCA) is a component-based SEM. One of the developments of GSCA is the GSCA method for multilevel data known as multilevel GSCA. Multilevel data is data that has a nested, grouped, or nested structure. This study aims to apply multilevel GSCA to the data on factors that affect poverty. The data used is on Indonesia's health, education and poverty in 2023.. The result is that all indicators are significant to the latent variables. The structural model shows that the quality of health has a negative and significant effect on poverty, education has a negative and significant effect on poverty, and the quality of health has a positive and significant effect on education. The results of between group show that health quality has a positive and significant effect on education in all regions, health quality has a negative and significant effect on poverty in Bali & Nusa Tenggara, Sulawesi, as well as Maluku and Papua, education has a negative and significant effect on poverty in Sumatra, Java, and Maluku & Papua. The overall goodness of fit value (FIT) is 0.622, meaning the model can explain 62.2% of data variation.
Fulltext View|Download
Keywords: SEM; GSCA; Multilevel GSCA; ALS. poverty.

Article Metrics:

  1. Abell, N., Springer, D. W., & Kamata, A. (2009). Developing and Validating Rapid Assessment Intrument (1 ed). New York: Oxford University Press
  2. Amanah, F., & Rahmawati, F. (2023). Study of Regularized Generalized Structured Component Analysis to Overcome Multicollinearity in Component-Based SEM. Jurnal Matematika, Statistika dan Komputasi, 20(1), 281–293. https://doi.org/10.20956/j.v20i1.28069
  3. Anggita, E. D., Hoyyi, A., & Rusgiyono, A. (2019). Analisis Structural Equation Modelling Pendekatan Partial Least Square dan Pengelompokan dengan Finite Mixture PLS (FIMIX-PLS) (Studi Kasus: Kemiskinan Rumah Tangga di Indonesia 2017). Jurnal Gaussian, 8(1), 35–45. https://doi.org/10.14710/j.gauss.v8i1.26620
  4. Badan Pusat Statistik (BPS). (2023). Data dan Informasi Kemiskinan Kabupaten/Kota Tahun 2023 (Vol. 15). Jakarta: Badan Pusat Statistik
  5. Burić, I., & Kim, L. E. (2020). Teacher Self-Efficacy, Instructional Quality, and Student Motivational Beliefs: An Analysis Using Multilevel Structural Equation Modeling. Learning and Instruction, 66, 101302. https://doi.org/10.1016/j.learninstruc.2019.101302
  6. Chin, W. W. (1998). The Partial Least Squares Approach to Structural Equation Modeling. In Modern Methods for Business Research (pp. 295–336). London: Lawrence Erlbaum Associates Publishers
  7. Gallego-Sánchez, M. D. C., De-Pablos-Heredero, C., Medina-Merodio, J.-A., Robina-Ramírez, R., & Fernandez-Sanz, L. (2021). Relationships Among Relational Coordination Dimensions: Impact on The Quality of Education Online with A Structural Equations Model. Technological Forecasting and Social Change, 166, 120608. https://doi.org/10.1016/j.techfore.2021.120608
  8. Ghozali, I. (2008). Generalized Structured Component Analysis (GSCA): Model Persamaan Structural Berbasis Komponen. Semarang: Badan Penerbit Universitas Diponegoro
  9. Hwang, H., & Takane, Y. (2014). Generalized Structured Component Analysis: A Component-Based Approach to Structural Equation Modeling. Boca Raton: Chapman & Hall/CRC Press
  10. Javadi, M. H., Khoshnami, M. S., Noruzi, S., & Rahmani, R. (2022). Health Anxiety and Social Health Among Health Care Workers and Health Volunteers Exposed to Coronavirus Disease in Iran (2020): A Structural Equation Modeling. Journal of Affective Disorders Reports, 8, 100321. https://doi.org/10.1016/j.jadr.2022.100321
  11. Long, R., Wang, J., Chen, H., Li, Q., Wu, M., & Tan-Soo, J.-S. (2023). Applying Multilevel Structural Equation Modeling to Energy-Saving Behavior: The Interaction of Individual and City-Level Factors. Energy Policy, 174, 113423. https://doi.org/10.1016/j.enpol.2023.113423
  12. Rabe-Hesketh, S., Skrondal, A., & Zheng, X. (2007). Multilevel Structural Equation Modeling. In Handbook of Latent Variable and Related Models (pp. 209–227). Elsevier. https://doi.org/10.1016/B978-044452044-9/50013-6
  13. Steenbergen, M. R., & Jones, B. S. (2002). Modeling Multilevel Data Structures. American Journal of Political Science, 46(1), 218-237. https://doi.org/10.2307/3088424
  14. Suhriani, I. F., & Abdurakhman. (2019). Pendekatan SEM Berbasis Komponen Menggunakan Generalised Structured Component Analysis (GSCA). Jurnal Sains Matematika dan Statistika, 5(2). DOI : 10.24014/jsms.v5i2.7629
  15. Supandi, E. D. (2020). Structural Equation Modeling With Generalized Structured Component Analysis on The Relationship Between Renumeration and Motivation on Employee Performance at UIN Sunan Kalijaga Yogyakarta. Media Statistika, 13(2), 136–148. https://doi.org/10.14710/medstat.13.2.136-148
  16. Tenenhaus, M. (2008). Component-based Structural Equation Modelling. Total Quality Management & Business Excellence, 19(7–8), 871–886. https://doi.org/10.1080/14783360802159543
  17. Zebua, H. I., & Harefa, G. A. (2022). Structural Equation Model (SEM) dalam Pemodelan Kemiskinan di Pulau Sumatera. Indonesian Journal of Applied Statistics, 5(1), 48-57. https://doi.org/10.13057/ijas.v5i1.50493

Last update:

No citation recorded.

Last update: 2025-01-28 21:32:02

No citation recorded.