skip to main content

PRICING RESIDENTIAL EARTHQUAKE INSURANCE IN INDONESIA

Alief Glenfico Anwar  -  Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Indonesia
*Danang Teguh Qoyyimi orcid scopus  -  Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Indonesia
Hengki Eko Putra  -  PT. Reasuransi MAIPARK Indonesia, Indonesia
Open Access Copyright (c) 2024 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Adaptive Social Protection (ASP) is a framework that integrates social protection, disaster risk reduction, and climate change adaptation to enhance resilience against shocks and hazards. As a country vulnerable to earthquakes, Indonesia faces threats of losses due to seismic disasters. The national budget available to cover these losses can only address 13.6% of the total disaster-related losses. This study proposes an earthquake insurance scheme to protect all residences in Indonesia as part of the ASP framework, followed by the calculation of premium rates for this insurance scheme. This study utilizes the built-in OpenQuake calculator known as the probabilistic event-based risk calculator to simulate annual earthquake losses over a period of 10,000 years. The negative binomial distribution and the Pareto IV distribution are assessed as the most optimal models in modeling frequency and severity through distribution fitting. The application of collective risk models and the principle of pure premium results in a pure premium rate of 0.3994073 ‰. This pure premium rate can serve as a starting point in the establishment of comprehensive residential earthquake insurance in Indonesia.

Fulltext View|Download
Keywords: Adaptive Social Protection; Disaster Risk Reduction; Residential Earthquake Insurance; Probabilistic Event-Based Risk; Collective Risk Model

Article Metrics:

  1. Arnall, A., Oswald, K., Davies, M., Mitchell, T., & Coirolo, C. (2010). Adaptive Social Protection: Mapping the Evidence and Policy Context in the Agriculture Sector in South Asia. IDS Working Papers, 2010(345), 01–92. https://doi.org/10.1111/j.2040-0209.2010.00345_2.x
  2. BKF. (2018). Strategi Pembiayaan dan Asuransi Risiko Bencana. Ministry of Finance
  3. Bommer, J. J. (2002). Deterministic vs. Probabilistic seismic hazard assessment: An exaggerated and obstructive dichotomy. Journal of Earthquake Engineering, 6, 43–73. https://doi.org/10.1080/13632460209350432
  4. Bowen, T., Del Ninno, C., Andrews, C., Coll-Black, S., Gentilini, U., Johnson, K., Kawasoe, Y., Kryeziu, A., Maher, B., & Williams, A. (2020). Adaptive Social Protection. Building Resilience to Shocks. The World Bank
  5. Davies, M., Guenther, B., Leavy, J., Mitchell, T., & Tanner, T. (2008). Adaptive Social Protection: Synergies for Poverty Reduction. IDS Bulletin, 39(4), 105–112. https://doi.org/10.1111/j.1759-5436.2008.tb00483.x
  6. Gasior, K., Wright, G., Barnes, H., & Noble, M. (2024). Adaptive Social Protection in Indonesia: Stress-testing The Effect of a Natural Disaster on Poverty and Vulnerability. Social Policy and Administration, 58(3), 505–520. https://doi.org/10.1111/spol.12983
  7. GFDRR. (2011). Turkish Catastrophe Insurance Pool. www.tcip.gov.tr
  8. GIROJ. (2022). Earthquake Insurance in Japan
  9. Grossi, P., Kunreuther, H., Windeler, D., Mahdyiar, M., Porter, B., Kuzak, D., Larsen, T., Dong, W., Kleindorfer, P., Lalonde, D., Michel-Kerjan, E., & Porter, B. (2005). Catastrophe Modeling : A New Approach to Managing Risk (Partricia Grossi & Howard Kunreuther, Eds.). Springer New York, NY. https://doi.org/10.1007/b100669
  10. Guin, J. (2018). Chapter 2 - What Makes a Catastrophe Model Robust. In G. Michel (Ed.), Risk Modeling for Hazards and Disasters (pp. 47–62). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-804071-3.00002-1
  11. Hosseinpour, V., Saeidi, A., Nollet, M. J., & Nastev, M. (2021). Seismic loss estimation software: A comprehensive review of risk assessment steps, software development and limitations. In Engineering Structures (Vol. 232). Elsevier Ltd. https://doi.org/10.1016/j.engstruct.2021.111866
  12. Hutchings, S. J., & Mooney, W. D. (2021). The Seismicity of Indonesia and Tectonic Implications. Geochemistry, Geophysics, Geosystems, 22(9). https://doi.org/10.1029/2021GC009812
  13. Irsyam, M., Cummins, P. R., Asrurifak, M., Faizal, L., Natawidjaja, D. H., Widiyantoro, S., Meilano, I., Triyoso, W., Rudiyanto, A., Hidayati, S., Ridwan, M., Hanifa, N. R., & Syahbana, A. J. (2020). Development of the 2017 national seismic hazard maps of Indonesia. Earthquake Spectra, 36(1_suppl), 112–136. https://doi.org/10.1177/8755293020951206
  14. Irsyam, M., Faizal, L., Natawidjaja, D., Meilano, I., Widiyantoro, S., Triyoso, W., Rudiyanto, A., Hidayati, S., Asrurifak, M., Ridwan, M., & Cummins, P. (2023). PSHA input model documentation for Indonesia (IDN)
  15. Jensen, N., Ikegami, M., & Mude, A. (2017). Integrating Social Protection Strategies for Improved Impact: A Comparative Evaluation of Cash Transfers and Index Insurance in Kenya. Geneva Papers on Risk and Insurance: Issues and Practice, 42(4), 675–707. https://doi.org/10.1057/s41288-017-0060-5
  16. Klugman, S. A., Panjer, H. H., & Willmot, G. E. (2019). Loss Models : From Data to Decisions (Fifth). John Wiley and Sons, Inc
  17. Kohrangi, M., Papadopoulos, A. N., Kotha, S. R., Vamvatsikos, D., & Bazzurro, P. (2021). Earthquake Catastrophe Risk Modeling, Application to the Insurance Industry: Unknowns and Possible Sources of Bias in Pricing (pp. 239–274). https://doi.org/10.1007/978-3-030-68813-4_11
  18. Martins, L., & Silva, V. (2023). Global Vulnerability Model of the GEM Foundation. Github. https://doi.org/10.5281/zenodo.8391742
  19. New Zealand Government. (2015). New Zealand’s Future Natural Disaster Insurance Scheme
  20. Pagani, M., Silva, V., Rao, A., Simionato, M., & Johnson, K. (2022). OpenQuake Engine Manual
  21. Rana, I. A., Khaled, S., Jamshed, A., & Nawaz, A. (2022). Social protection in disaster risk reduction and climate change adaptation: A bibliometric and thematic review. Journal of Integrative Environmental Sciences, 19(1), 65–83. https://doi.org/10.1080/1943815X.2022.2108458
  22. Sagala, S., Putra, H. E., Hafiz, I., Ramadhani, A., & Anwar, H. (2020). Cost-Benefit Analysis of Disaster Risk Financing and Insurance in Indonesia. In B. S. Nazamuddin, S. Mahdi, C. Dewi, Saleh. M. Sjafei, A. Halimatussadiah, D. Hartono, D. Pratomo, H. Handra, & Budy. P. Resosudarmo (Eds.), Disasters and Regional Development In Indonesia (1st ed.). Perkumpulan Ilmu Regional Indonesia (IRSA)
  23. SEOJK No.6 (2017)
  24. Silva, V., Crowley, H., Pagani, M., Monelli, D., & Pinho, R. (2014). Development of the OpenQuake engine, the Global Earthquake Model’s open-source software for seismic risk assessment. Natural Hazards, 72(3), 1409–1427. https://doi.org/10.1007/s11069-013-0618-x
  25. Stewart, J. P., Douglas, J., Javanbarg, M., Bozorgnia, Y., Abrahamson, N. A., Boore, D. M., Campbell, K. W., Delavaud, E., Erdik, M., & Stafford, P. J. (2015). Selection of Ground Motion Prediction Equations for the Global Earthquake Model. Earthquake Spectra, 31(1), 19–45. https://doi.org/10.1193/013013EQS017M
  26. Tenzing, J. D. (2020). Integrating social protection and climate change adaptation: A review. WIREs Climate Change, 11(2). https://doi.org/10.1002/wcc.626
  27. Teugels, J. L., & Sundt, B. (2004). Encyclopedia of Actuarial Science (Vol. 1). Wiley
  28. TREIF. (2024). Introduction to the TREIF. https://www.treif.org.tw/en/xmdoc/cont?xsmsid=0L314500064187599532
  29. UNISDR. (2015). Sendai Framework for Disaster Risk Reduction 2015 - 2030
  30. Verstappen, H. Th. (2010). Indonesian Landforms and Plate Tectonics. Indonesian Journal on Geoscience, 5(3), 197–207. https://doi.org/10.17014/ijog.5.3.197-207
  31. World Bank. (2012). FONDEN: Mexico’s Natural Disaster Fund - A Review. www.worldbank.org
  32. Yepes-Estrada, C., Calderon, A., Costa, C., Crowley, H., Dabbeek, J., Hoyos, M. C., Martins, L., Paul, N., Rao, A., & Silva, V. (2023). Global building exposure model for earthquake risk assessment. Earthquake Spectra, 39(4), 2212–2235. https://doi.org/10.1177/87552930231194048

Last update:

No citation recorded.

Last update: 2025-05-23 17:10:24

No citation recorded.