skip to main content

Pemetaan Lahan Sub-Optimal Berbasis Nilai NDVI Sentinel 2a: Studi Pendahuluan

Mapping of Sub-Optimal Land Based on NDVI Sentinel 2a Value: Preliminary Study

*Indarto Indarto orcid scopus  -  Universitas Jember, Indonesia
Rufiani Nadzirah  -  Universitas Jember, Indonesia
Hadrian Reksa Belagama  -  Universitas Jember, Indonesia

Citation Format:
Abstract
Normalised Difference Vegetation Index (NDVI) is one of the vegetation indices used to analyse vegetation density. This study presents the potential use of NDVI to map dry-marginal-agricultural land (Dry-MAL). The study conducted in the eastern part of Situbondo, which includes three districts, namely, Arjasa, Asembagus and Jangkar. Sentinel-2A (recorded in 2018) and 450 Control points (GCPs) are used as the primary input. The region is an area with distinctive climate characteristics, where the dry season is longer than the rainy season. Analysis using "SNAP plug-ins" and "QGIS". Research procedures include (1) data inventory, (2) data pre-processing, (3) data processing and (4) accuracy testing. The NDVI classification can distinguish six (6) classes of land-use, i.e., water bodies, residential areas, dry MAL, non-irrigated rural area, irrigated paddy fields, forest-plantations. The NDVI classification produces Overall and Kappa accuracy values =  66,9% and 61,6%. Although the overall and kappa accuracy is below the standard, however, the result will benefit for further research of index vegetation or soil more applied for the identification of Dry-MAL
Fulltext View|Download
Keywords: sentinel 2A; NDVI; classification; dry-marginal; agricultural-land
Funding: Universitas Jember

Article Metrics:

  1. Ahmed, M., Else, B., Eklundh, L., Ardö, J., & Seaquist, J. 2017. Dynamic response of NDVI to soil moisture variations during different hydrological regimes in the Sahel region. International Journal of Remote Sensing, 38(19), 5408–5429
  2. Badan Informasi Geospasial. 2017. Geospasial untuk Negeri. Retrieved January 25, 2019, from Pusat Pengelolaan dan Penyebarluasan Informasi Geospasial Badan Informasi Geospasial (BIG) website: http://tanahair.indonesia.go.id/portal-web
  3. Badan Pusat Statistik. 2016. Situbondo dalam angka. Situbondo: BPS-Statistics of Situbondo Regency
  4. Ballitanah. 2016. Laporan Kinerja Balai Penelitian Tanah 2016
  5. Bayramov, E., Buchroithner, M., & Bayramov, R. 2016. Quantitative assessment of 2014–2015 land-cover changes in Azerbaijan using object-based classification of LANDSAT-8 time series. Modeling Earth Systems and Environment, 2(1). https://doi.org/10.1007/s40808-016-0088-8
  6. Blankenship, W. D., Condon, L. A., & Pyke, D. A. 2019. Hydroseeding tackifiers and dryland moss restoration potential. Restoration Ecology
  7. Bontemps, S., Arias, M., Cara, C., Dedieu, G., Guzzonato, E., Hagolle, O., … Defourny, P. 2015. Building a data set over 12 globally distributed sites to support the development of agriculture monitoring applications with Sentinel-2. Remote Sensing, 7(12), 16062–16090. https://doi.org/10.3390/rs71215815
  8. Chen, T., De Jeu, R. A. M., Liu, Y. Y., Van der Werf, G. R., & Dolman, A. J. 2014. Using satellite based soil moisture to quantify the water driven variability in NDVI: A case study over mainland Australia. Remote Sensing of Environment, 140, 330–338
  9. Clerici, N., Valbuena Calderón, C. A., & Posada, J. M. 2017. Fusion of sentinel-1a and sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia. Journal of Maps, 13(2), 718–726. https://doi.org/10.1080/17445647.2017.1372316
  10. Danoedoro, P. (2012). Pengantar penginderaan jauh digital. Yogyakarta: Andi
  11. Ghazanfari, S., Pande, S., Hashemy, M., & Sonneveld, B. 2013. Diagnosis of GLDAS LSM based aridity index and dryland identification. Journal of Environmental Management, 119, 162–172
  12. Gherardi, L. A., & Sala, O. E. 2019. Effect of interannual precipitation variability on dryland productivity: A global synthesis. Global Change Biology, 25(1), 269–276
  13. Glenn, N. F., Neuenschwander, A., Vierling, L. A., Spaete, L., Li, A., Shinneman, D. J., … McIlroy, S. K. 2016. Landsat 8 and ICESat-2: Performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass. Remote Sensing of Environment, 185, 233–242
  14. Gu, Y., Hunt, E., Wardlow, B., Basara, J. B., Brown, J. F., & Verdin, J. P. 2008. Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophysical Research Letters, 35(22)
  15. Jaya, I. N. S., & Surati, N. 2010. Analisis citra digital: perspektif penginderaan jauh untuk pengelolaan sumberdaya alam. Fakultas Kehutanan. Bogor (ID): Institut Pertanian Bogor
  16. Kawamuna, A., Suprayogi, A., & Wijaya, A. P. 2017. Analisis kesehatan hutan mangrove berdasarkan metode klasifikasi NDVI pada citra Sentinel-2(Studi Kasus: Teluk Pangpang Kabupaten Banyuwangi). Geodesi Undip, 6, 277–284
  17. Kholifah, S. 2019. Klasifikasi dan Interpretasi citra satelit sentinel untuk pemetaan tutupan lahan pada wilayah (Arjasa, Asembagus dan Jangkar) Kabupaten Situbondo (Metode Unsupervised dan Supervised Classification). Universitas Jember
  18. LAPAN. 2015. Pedoman pengolahan data satelit multispektral secara digital supervised untuk klasifikasi. Jakarta: Pusat Pemanfaatan Penginderaan Jauh Lembaga Penerbangan dan Antariksa Nasional
  19. Las, I., M. S. A., & Mulyani. 2012. Kunjungan kerja tematik dan penyusunan model/program percepatan pembangunan pertanian berbasis inovasi wilayah pengembangan khusus lahan suboptimal. Balai Besar Litbang Sumberdaya Lahan Pertanian, Bogor
  20. Naser, M. A., Khosla, R., Longchamps, L., & Dahal, S. 2020. Using NDVI to Differentiate Wheat Genotypes Productivity Under Dryland and Irrigated Conditions. Remote Sensing, 12(5), 824
  21. Osgouei, P. E., Kaya, S., Sertel, E., & Alganci, U. 2019. Separating built-up areas from bare land in mediterranean cities using Sentinel-2A imagery. Remote Sensing, 11(3). https://doi.org/10.3390/rs11030345
  22. Putra, B. T. W., Soni, P., Marhaenanto, B., Harsono, S. S., & Fountas, S. 2019. Using information from images for plantation monitoring: A review of solutions for smallholders. Information Processing in Agriculture
  23. Rahaman, K. R., Hassan, Q. K., & Ahmed, M. R. 2017. Pan-Sharpening of Landsat-8 Images and its application in calculating vegetation greenness and canopy water contents. ISPRS International Journal of Geo-Information, 6(6), 168. https://doi.org/10.3390/ijgi6060168
  24. Sinaga, S. H., Suprayogi, A., & Haniah. 2018. Analisis ketersediaan ruang terbuka hijau dengan metode normalized difference vegetation index dan soil adjusted vegetation index menggunakan citra satelit sentinel-2a (Studi Kasus: Kabupaten Demak) Sulaiman. Geodesi Undip
  25. USGS. 2019. EarthExplorer - Home. U.S. Geological Survey. Retrieved from https://earthexplorer.usgs.gov/
  26. Zewdie, W., Csaplovics, E., & Inostroza, L. 2017. Monitoring ecosystem dynamics in northwestern Ethiopia using NDVI and climate variables to assess long term trends in dryland vegetation variability. Applied Geography, 79, 167–178

Last update:

  1. Algorithm development for drought mapping using imagery Sentinel-2

    Puthut Omar Satriawan, Entin Hidayah, Gusfan Halik. 1ST INTERNATIONAL CONFERENCE ON SUSTAINABLE CONSTRUCTION AND ENVIRONMENT (SCE) 2022: Challenges on Sustainable Construction and its Impacts to the Environment, 3043 , 2024. doi: 10.1063/5.0206474

Last update: 2025-01-22 08:51:32

No citation recorded.