skip to main content

Kinerja Microbial Fuel Cell dengan Variasi Hambatan Eksternal dalam Menghasilkan Energi Listrik dan Menyisihkan Senyawa Organik pada Limbah Cair

Performance of Microbial Fuel Cell with Variation of External Resistors in Producing Electrical Energy and Removing Organic Compounds in Wastewater

*Syarif Hidayat orcid scopus  -  Institut Teknologi Bandung, Indonesia
Dini Widyani Aghnia  -  Institut Teknologi Bandung, Indonesia
Edwan Kardena  -  Institut Teknologi Bandung, Indonesia
Qomarudin Helmy  -  Institut Teknologi Bandung, Indonesia

Citation Format:
wastewater into direct electrical energy. In this study, the applied external resistance in the MFC reactor was optimized to determine its optimum conditions in generating electrical energy and removing organic compounds in wastewater. The MFC reactor's performance was evaluated by cell potential, power density, Coulombic efficiency (CE), and organic removal efficiency. The purpose of measuring these parameters is to determine the MFC reactor's performance in producing electrical energy and removing organic compounds for each experiment variation. Biochemical tests were carried out to choose the type of microorganisms in the anode electrode. This measurement is essential for the optimization of environmental conditions for subsequent experiments. MFC reactor with 100 Ω was selected as an optimum condition since it produced the highest power density and efficiency organic removal. In this condition, the CE value was 57%, slightly lower than the MFC reactor with an external resistance of 50 Ω, 65%. Based on biochemical tests, microorganisms that grow on the anode electrode were closed to the Clostridium (Clostridium sp1 and Clostridium sp2), a type of bacteria that belongs to the class of the exoelectrogen. The results showed that the applied external resistance influenced the performance of the MFC reactor. Thus the selection of the proper external resistance is an essential factor in the MFC reactor's operation.
Fulltext View|Download
Keywords: renewable energy; bioenergy recovery; wastewater treatment; exoelectrogen

Article Metrics:

  1. Badan Perencanaan Pembangunan Nasional. Roadmap of SDGs Indonesia 2019: a Highlight
  2. Barrow, G. dan Feltham, R., 1993. Cowan and Steele’s manual for the identification of medical bacteria. 3rd edn. Cambridge, England: Cambridge University Press
  3. Choi, J. dan Ahn, Y.H., 2015. Enhanced Bioelectricity Harvesting in Microbial Fuel Cells Treating Food Waste Leachate Produced from Biohydrogen Fermentation. Bioresource Technology 183,53–60
  4. Deng, H., Xue, H., dan Zhong, W., 2017. A Novel Exoelectrogenic Bacterium Phylogenetically Related to Clostridium sporogenes Isolated from Copper Contaminated Soil. Electroanalysis. 29 (5),1294-1300
  5. Gonzalez del Campo, A., Canizares, P., Lobato, L., Rodrigo, M., dan Fernandez, F.J., 2016. Effect of external resistance on microbial fuel cell. Eds. Environment, Energy and Climate Change II: Energies from New Resources and the Climate Change. Berlin, Germany: Springer International Publishing
  6. Jayashree, C., Tamilarasan, K., Rajkumar, M., Arulazhagan, P., Yogalakshmi, K.N., Srikanth, M., Banu, J.R.,2016. Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm. Journal of Environmental Management 180, 351-358
  7. Jia, J., Tang, Yu., Liu, B., Wu, D., Ren, N., dan Xing, D., 2013. Electricity generation from food wastes and microbial community structure in microbial fuel cells. Bioresource Technology 144,94-99
  8. Katuri, K.P., Keith, S., Ian M.H., Cristian, P., dan Tom, P.C., 2011. Microbial Fuel Cells Meet with External Resistance. Bioresource Technology 102. 2758-2766
  9. Kaushik, A., Jadhav, S.K., 2015. Conversion of waste to electricity in a microbial fuel cell using newly identified bacteria: Pseudomonas fluorescens. International Journal of Environmental Science and Technology 14(8), 1771–1780
  10. Kementerian Energi dan Sumber Daya Mineral Republik Indonesia. Indonesia Energy Outlook 2019. Sekretariat Jenderal Dewan Energi Nasional
  11. Khater, D.Z., El-Khatib, K.M., dan Hassan, H.M., 2017. Microbial diversity structure in acetate single chamber microbial fuel cell for electricity generation. Journal of Genetic Engineering and Biotechnology 15 (1), 127-137
  12. Logan, B.E, dan Rabaey, K., 2012. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337 (6095),686-690
  13. Logan, B.E., 2008. Microbial Fuel Cell. New Jersey, United States: John Willey & Sons
  14. Lyon, D.Y., Buret, F., Vogel, T.M., Monier, J.M., 2010. Is resistance futile? Changing external resistance does not improve microbial fuel cell performance. Bioelectrochemistry 78,2–7
  15. Mamińska, R.T., Szymona, K., dan Kloch, M., 2018. Bioelectricity production from wood hydrothermal-treatment wastewater: Enhanced power generation in MFC-fed mixed wastewaters. Science of The Total Environment 634, 586-594,
  16. Menicucci, J., Haluk, B., Enrico, M., Raajaraajan, A.V., Goksel, D., dan Zbigniew, L., 2006. Procedure for Determining Maximum Sustainable Power Generated by Microbial Fuel Cells. Environmental Science and Technology 40,1062-1068
  17. Peraturan Pemerintah Republik Indonesia No 79 Tahun 2014: Kebijakan Energi Nasional mendorong pemanfaatan Energi Baru Terbarukan (EBT) dan mengerem penggunaan sumber energi fosil
  18. Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., dan Oh, S.E. 2015. Microbial Fuel Cell as New Technology for Bioelectricity Generation: A Review. Alexandria Engineering Journal 54 (3),745-756
  19. Ramadan, B.S. and Purwono. 2017. Challenges and opportunities of microbial fuel cells (MFCs) technology development in Indonesia. Sriwijaya International Conference on Engineering, Science and Technology (SICEST 2016) 101, 02018
  20. Ren, Z., Yan, H., Wang, W., Mench, M.M., dan Regan, J.M., 2011. Characterization of microbial fuel cells at microbially and electrochemically meaningful time scales. Environmental Sciece Technology 45,2435–2441
  21. Sneath, P., 1986. Bergey’s manuals on systematic bacteriology (vol. 2). Baltimore, USA: Williams & Wilkins
  22. Song, S.T., Wu, X.Y., dan Zhou, C.C., 2012. Effect of different acclimation methods on the performance of microbial fuel cells using phenol as substrate. Bioprocess and Biosystems Engineering 37, 133-138
  23. Song, Y.H., An B.M., Shin, J.W., dan Park, J.Y., 2015. Ethanolamine Degradation and Energy Recovery Using a Single Air-Cathode Microbial Fuel Cell with Various Separators. International Biodeterioration and Biodegradation 102,392–97
  24. Song, Y.H., An, B.M., Shin, J.W., dan Park, J.Y., 2015. Ethanolamine degradation and energy recovery using a single air-cathode microbial fuel cell with various separators. International Biodeterioration & Biodegradation 102, 392-397
  25. Xin, X., Ma, Y., Liu, Y., 2018. Electric energy production from food waste: Microbial fuel cells versus anaerobic digestion. Bioresource Technology 255, 281-287

Last update:

  1. The Effect of Septage Sludge and Oxidizing Agents in the Microbial Fuel Cells Generating Electricity

    Vidia Wahyu Meidy Safitri, Adhi Yuniarto, Alfan Purnomo, Bara Awanda Marhendra. Tropical Aquatic and Soil Pollution, 3 (2), 2023. doi: 10.53623/tasp.v3i2.272

Last update: 2024-04-23 06:57:22

No citation recorded.