Pengolahan Logam Pb(II) pada Limbah Cair Menggunakan Metode Kombinasi Elektrokoagulasi−Adsorpsi Karbon Aktif

Treatment of Pb(II) Metal in Wastewater Using Combination Method of Electrocoagulation − Activated Carbon Adsorption

*Adhi Setiawan scopus  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Tarikh Azis Ramadani  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Rizka Lutfita Hanastasia  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Received: 13 Feb 2020; Revised: 23 Jul 2020; Accepted: 30 Jul 2020; Published: 31 Jul 2020; Available online: 30 Aug 2020.
Open Access
Citation Format:
Abstract
Metal Pb(II) is one of the pollutants that causes water pollution and impacts ecosystem damage. Pb(II) metal waste is toxic and biomagnification, so it harms human health. The combination of electrocoagulation and adsorption processes is an efficient and effective alternative in removing Pb(II) metal in wastewater. In this study, the wastewater treatment process is carried out in batch using electrocoagulation with aluminum electrodes and followed by activated carbon adsorption. This research aimed to analyze the effect of electrical voltage in electrocoagulation, adsorption time, and adsorbent dose on reducing Pb(II) concentration. Electrocoagulation and adsorption processes were used variations of  electrical voltage (10, 20, 30 V), adsorption times (15, 30, 45 minutes), and adsorbent doses (2,5, 3,3, 4,1, 5 g/L). The research showed that the combination of electrocoagulation and adsorption could significantly reduce Pb(II) concentration in wastewater. Increased electrical voltage, adsorption time, and adsorbent dose lead to increased Pb(II). The maximum removal efficiency of Pb(II) metal was obtained under voltage of 30 V, 45 minutes adsorption time, and 5 g/L adsorbent dose. This condition resulted in removal efficiency Pb(II) of 96,01%.
Keywords: adsorption; avocado seed waste; electrocoagulation; lead metal waste

Article Metrics:

  1. Apriliani, A. 2010. Pemanfaatan Arang Ampas Tebu Sebagai Adsorben Ion Logam Cd, Cr, Cu, dan Pb dalam Air Limbah. Skripsi Fakultas Sains dan Teknologi UIN Syarif Hidayatullah Jakarta
  2. Bazrafshan, E., Ownagh, K.A., & Mahvi, A.H. 2012. Application of Electrocoagulation Process using Iron and Aluminium Electrodes for Floride Removal from Aqueous Environment. E-Journal of Chemistry 9(4), 2297–2308
  3. Erawati, W., & Fernando, A. 2018. Pengaruh Jenis Aktivator dan Ukuran Karbon Aktif Terhadap Pembuatan Adsorbent dari Serbuk Gergaji Kayu Sengon (Paraserianthes Falcataria). Jurnal Integrasi Proses 7(2), 58–66
  4. Fibrianti, L. D., & Azizah, R. 2015. Karakteristik, Kadar Timbal (Pb) dalam Darah, dan Hipertensi Pekerja Home Industry Aki Bekas di Desa Talun Kecamatan Sukodadi Kabupaten Lamongan. Jurnal Kesehatan Lingkungan 8(1), 92−102
  5. Ganesan, P., Lakshmi, J., Sozhan, G., & Vasudevan, S. 2013. Removal of Manganese from Water by Electrocoagulation: Adsorption, Kinetics and Thermodynamic Studies. The Canadian Journal Of Chemical Engineering 91(1), 448−458
  6. Lestari, S. 2010. Pengaruh Berat dan Waktu Kontak untuk Adsorpsi Timbal(II) oleh Adsorben dari Kulit Batang Jambu Biji. Jurnal Kimia Mulawarman 8(1), 7−10
  7. Lubis, L.M. 2008. Ekstrak Pati Dari Biji Alpukat. Karya Ilmiah. Medan : Fakultas Pertanian Universitas Sumatera Utara
  8. Myllymäki, P., Lahti, R., Romar, H., & Lassi, U. 2018. Removal of Total Organic Carbon from Peat Solution By Hybrid Method−Electrocoagulation Combined With Adsorption. Journal of Water Process Engineering 24(1), 56–62
  9. Oleszczuk, P., Staszczuk, P., Kowalczyk, Skubiszewska-Zieba, J., & Leboda, R. 2003. Effect of Hydrothermal Modification on the Porous Structure and Thermal Properties of Carbon-Silica Adsorbents (carbosils). Materials Chemistry and Physics 78(2) ,486−494
  10. Ouaissa, Y. A., Chabani, M., Amrane, A., & Bensmaili A. 2012. Integration of Electro Coagulation and Adsorption for The Treatment of Tannery Wastewater–The Case of an Algerian Factory, Rouiba. Procedia Engineering 33(1), 98−101
  11. Peraturan Menteri Lingkungan Hidup Republik Indonesia Nomor 5 Tahun 2014 Tentang Baku Mutu Air Limbah
  12. Ridantami, V., Wasito, B., & Prayitno, P. 2016. Pengaruh Tegangan dan Waktu Pada Pengolahan Limbah Radioaktif Uranium dan Thorium Dengan Proses Elektrokoagulasi. Jurnal Forum Nuklir 10(2), 102−107
  13. Sandi, A.P., & Astuti, A. 2014. Pengaruh Waktu Menggunakan H3PO4 Terhadap Struktur dan Ukuran Pori Karbon Berbasis Arang Tempurung Kemiri (Aleurites moluccana). Jurnal Fisika Unand 3(2), 115−120
  14. Setiawan, A., Basyiruddin, F., & Dermawan, D. 2019. Biosorpsi Logam Berat Cu(II) Menggunakan Limbah Saccharomyces Cereviseae. Jurnal Presipitasi : Media Komunikasi dan Pengembangan Teknik lingkungan 16(1), 29−35
  15. Takdastan, A., Tabar, S. E., Islam, A., Bazafkan, M., & Naisi, A. 2015. The Effect of The Electrode in Fluoride Removal from Drinking Water by Electrocoagulation Process. Dubai: International Conference on Chemical, Environmental and Biological Sciences
  16. Vasudevan, S., Lakshmi, J., & Sozhan, G. 2012. Optimization of Electrocoagulation Process for The Simultaneous Removal of Mercury, Lead, and Nickel from Contaminated Water. Environmental Science and Pollution Research 19(7), 2734–2744
  17. Verayana, V., Paputungan, M., & Iyabu, H. 2018. Pengaruh Jenis Aktivator dan Ukuran Karbon Aktif Terhadap Pembuatan Adsorbent dari Serbuk Gergaji Kayu Sengon (Paraserianthes Falcataria). Jurnal Entropi 13(1), 67-75
  18. Wardalia, W. 2016. Karakterisasi Pembuatan Adsorben Dari Sekam Padi Sebagai Pengadsorp Logam Timbal Pada Limbah Cair. Jurnal Integrasi Proses 6(2), 83-88

Last update: 2021-05-12 13:22:33

No citation recorded.

Last update: 2021-05-12 13:22:33

No citation recorded.