skip to main content

Analisis Kebutuhan Bak Penampung Lumpur IPA sebagai Upaya Pengendalian Dampak Lingkungan

Drying Bed Volume Design Analysis for Reducing Environmental Impact of WTP Residuals

*Deasy Ambar Sari  -  Universitas Gadjah Mada, Indonesia
Budi Kamulyan  -  Universitas Gadjah Mada, Indonesia
Bambang Triatmodjo  -  Universitas Gadjah Mada, Indonesia

Citation Format:
Abstract
Sand Drying Bed (SDB) is designed for reducing the potential environmental impact caused by Water Treatment Plants – WTP residuals. Currently, the technical document of SNI (Indonesian National Standard) is still difficult to be applied by the engineer in determining required SDB’s volume based on WTP’s capacity and raw water conditions. The purpose of this research is to analyze WTP’s sludge production for designing SDB’s volume. The research was taken place at Pajangan WTP (50 l/s capacity) and Bantar System of Kartamantul WTP (400 l/s capacity) in Yogyakarta Special Province, which use Progo River as raw water source. The data used in the analysis is raw water turbidity compilation data, TSS (Total Suspended Solid) fluctuations rate of raw water, coagulant dosage used, specific gravity range of dried sludge and imhoff settling ratio based on laboratory tests. The results obtained show that one-year production of dry sludge on Pajangan WTP Unit is estimated to reach 244.55 m3/year from the total number of WTP residual (water and sludge) produced of around 43,158.52 m3/year. Meanwhile, the dry sludge produced on Kartamantul WTP Unit is estimated to reach 1,550.49 m3/year from the total number of WTP residual produced of around 273,635.22 m3/year. Then, each of Pajangan and Kartamantul WTP unit produced about 2.365 m3/day and 1.874 m3/day sludge for every 1 liter/second of raw water. This large amount of sludge leads the SDB has to be better designed.
Fulltext View|Download
Keywords: sludge residual, WTP, SDB, volume design

Article Metrics:

  1. Adityosulindro, S., Hartono, D.M., Pramusinto, A.C., 2013. Evaluasi Timbulan Lumpur dan Perancangan Sistem Pengolahan Lumpur (Studi Kasus: Instalasi Pengolahan Air Minum Cibinong, Jawa Barat). Jurnal Lingkungan Tropis 7, 131–146
  2. Adityosulindro, S., Rochmatia, N.H., Hartono, D.M., Moersidik, S.S., 2020. Evaluasi Kualitas dan Kuantitas Lumpur Alum dari Instalasi Pengolahan Air Minum Citayam. Jurnal Teknologi Lingkungan 21, 157–164
  3. Ahmad, T., Ahmad, K., Alam, M., 2016. Characterization of Water Treatment Plant’s Sludge and its Safe Disposal Options. Procedia Environmental Sciences 35, 950–955
  4. Ahmad, T., Ahmad, K., Alam, M., 2017. Sludge Quantification at Water Treatment Plant and its Management Scenario. Journal of Environmental Monitoring and Assessment 189, 453
  5. BSN-Indonesia, 2011. SNI 7510-Tata Cara Perencanaan Pengolahan Lumpur pada Instalasi Pengolahan Air Minum dengan Bak Pengering Lumpur (Sludge Drying Bed). Badan Standardisasi Nasional Indonesia, Jakarta
  6. Casey, T., 1997. Unit Treatment Processes in Water and Wastewater Engineering. John Wiley & Sons Ltd., West Sussex-England
  7. Cornwell, D.A., Roth, D.K., 2011. Water Treatment Plant Residuals Management. In: Edzwald, J.K. (Ed.), Water Quality & Treatment- A Handbook on Drinking Water. McGrawn-Hill, USA
  8. Davis, M.L., Cornwell, D.A., 1998. Introduction to Environmental Engineering, 3 ed. WCB McGraw-Hill, Singapore
  9. Elissa, A., Saptomo, S.K., 2020. Analisis Timbulan Lumpur dan Kualitas Lumpur Hasil Proses Pengolahan Air Bersih di WTP Kampus IPB Dramaga Bogor. Jurnal Teknik Sipil dan Lingkungan Vol.5, 31–40
  10. EPA/ASCE/AWWA, 1996. Technology Transfer Handbook-Management of Water Treatment Plant Residuals. American Society of Civil Engineers & American Water Works Association, Ohio-USA
  11. Hidalgo, A.M., Murcia, M.D., Gómez, M., Gómez, E., García-Izquierdo, C., Solano, C., 2017. Possible Uses for Sludge from Drinking Water Treatment Plants. Journal of Environmental Engineering 143, 04016088
  12. Julian, D.A., Lindu, M., Winarni, 2015. Studi Pengolahan Lumpur Instalasi Pengolahan Air Minum Taman Kota - Jakarta Barat. Jurnal Teknik Lingkungan-Universitas Trisakti 7, 75–80
  13. Kementerian-LH, 2014. Peraturan Menteri Lingkungan Hidup Nomor 5 Tahun 2014 tentang Baku Mutu Air Limbah. Kementerian Lingkungan Hidup, Jakarta
  14. Peck, B.E., Russell, J.S., 2005. Process Residual. In: Water Treatment Plant Design - AWWA&ASCE. McGrawn-Hill, New York
  15. Pemerintah Republik Indonesia, 2001. Peraturan Pemerintah Nomor 82 Tahun 2001 tentang Pengelolaan Kualitas Air dan Pengendalian Pencemaran Air. Pemerintah Republik Indonesia, Jakarta
  16. Pratiwi, R., Rachmawati, S.D., Pharmawati, K., 2015. Perbandingan Potensi Berat dan Volume Lumpur yang Dihasilkan oleh IPA Badak Singa PDAM Tirtawening Kota Bandung Menggunakan Data Sekunder dan Primer. Jurnal Reka Lingkungan - Institut Teknologi Nasional 3, 1–11
  17. Selasar.co, 2020. Warga Protes, PDAM Buang Air Limbah Hitam Pekat ke Sungai. URL https://selasar.co/read/2020/03/02/986/warga-protes-pdam-buang-air-limbah-hitam-pekat-ke-sungai (diakses 11.16.20)
  18. Wickramaarachchi, T.N., Ishidaira, H., Wijayaratna, T.M.N., 2013. Streamflow, Suspended Solids, and Turbidity Characteristics of the Gin River, Sri Lanka. Journal of the Institution of Engineers, Sri Lanka 46, 43–51

Last update:

  1. Perencanaan Instalasi Pengolahan Lumpur IPA Parit Mayor Perumda Air Minum Tirta Khatulistiwa Kota Pontianak

    Rahmat Mulyanto, Winardi Winardi, Isna Apriani. Jurnal ABDINUS : Jurnal Pengabdian Nusantara, 7 (2), 2023. doi: 10.29407/ja.v7i2.15748

Last update: 2024-04-23 14:19:54

No citation recorded.