skip to main content

Decontamination of Mercury from Mined Soil using Magnetite Functionalized Quaternary Ammonium Silica (Fe3O4/SAK)

*Ngatijo Ngatijo orcid scopus  -  Universitas Jambi, Indonesia
Defia Indah Permatasari  -  Universitas Jambi, Indonesia
Faizar Farid  -  Universitas Jambi, Indonesia
Restina Bemis scopus  -  Universitas Jambi, Indonesia
Heriyanti Heriyanti scopus  -  Universitas Jambi, Indonesia
Rahmat Basuki orcid scopus publons  -  Universitas Pertahanan RI, Indonesia
Yudha Gusti Wibowo scopus  -  Universitas Diponegoro, Indonesia

Citation Format:
Abstract

Artisanal small-scale gold mining (ASCGM) has caused mercury contamination. However, efforts to decontaminate mercury from the ex-mining soils are still rare. This study aims to synthesize quaternary ammonium silica functionalized magnetite (Fe3O4/SAK) as a low price, highly available, and quickly separated adsorbent for mercury decontamination from ex-mining soils samples. The synthesis of Fe3O4/SAK and the mercury decontamination process was carried out by the co-precipitation and batch type reactor procedure, respectively. The Fourier Transform-Infra Red (FT-IR) characterization of synthesized Fe3O4/SAK informed the appearance of siloxane, silanol, methyl, methylene, and Fe-O functional groups. Crystal analysis by X-Ray Diffraction (XRD) showed that the typical peaks of SiO2 and Fe3O4 were emerged at 2θ 22.8˚ and 35.52˚, respectively. Morphological studies and elemental analysis using Scanning Electron Microscopy-Energy Dispersive X-Ray (SEM-EDX) indicated the successful functionalization Fe3O4 by SAK in the transformation of surface morphology and composition of the main elements, namely C, O, Si, and Fe. The results of characterization using Surface Area Analyzer (SAA) showed that the surface area and pore diameters were 224.98 m2/g and 36.149-38.70 Å, respectively. The optimum results for adsorbing Hg22+ metal ions were obtained at pH 4.0, and the adsorbent mass was 0.1 g. The Fe3O4/SAK has been proven to be an easily separable adsorbent after the mercury decontamination process in ex-mining soil samples with an adsorption efficiency of 43.36% (0.722 mg/g).

Fulltext View|Download
Keywords: mercury decontamination, former mining soil, magnetite functionalized quaternary ammonium silica.

Article Metrics:

  1. Aulia, R.R., Effendi, A.J., 2020. Penyisihan Merkuri (Hg) dari Air Hasil Pencucian Tanah Menggunakan Adsorben GAC Terimpregnasi Fe Dan Ce. Jurnal Teknik Lingkungan. 26, 37–52
  2. Basuki, R., Ngatijo, Santosa, S.J., Rusdiarso, B., 2018. Comparison the new kinetics equation of noncompetitive sorption Cd(II) and Zn(II) onto green sorbent horse dung humic acid (HD-HA). Bull. Chemical Reaction Engineering & Catalysis. 13, 475–488
  3. Buhani, B., Narsito, N., Nuryono, N., Kunarti, E.S., 2009. Amino and mercapto-silica hybrid for Cd (II) adsorption in aqueous solution. Indonesian Journal of Chemistry. 9, 170–176
  4. Cestari, A.R., Vieira, E.F.S., de A Simoni, J., Airoldi, C., 2000. Thermochemical investigation on the adsorption of some divalent cations on modified silicas obtained from sol--gel process. Thermochim. Acta 348, 25–31
  5. Kalapathy, U., Proctor, A., Shultz, J., 2003. Silicate thermal insulation material from rice hull ash. Industrial & Engineering Chemistry Research. 42, 46–49
  6. Lin, Y., Chen, H., Lin, K., Chen, B., Chiou, C., 2011. Application of magnetic particles modified with amino groups to adsorb copper ions in aqueous solution. Journal of Environmental Science. 23, 44–50
  7. Mujiyanti, D.R., Nuryono, N., Kunarti, E.S., 2010. Sintesis dan karakterisasi silika gel dari abu sekam padi yang diimobilisasi dengan 3-(trimetoksisilil)-1-propantiol. Journal of Sains and Terapan Kimia. 4, 150–167
  8. Naswir, M., Desfaurnatalia, Y., Septiarini, L., Gusti Wibowo, Y., 2019. Activated Bentonite: Low Cost Adsorbent to Reduce Mercury Content in A Solution. Research Journal of Applied Sciences. 14, 243–249
  9. Naswir, M., Natalia, D., Arita, S., Wibowo, Y.G., 2020. Adsorption of Mercury Using Different Types of Activated Bentonite : A Study of Sorption , Kinetics , and Isotherm Models. Journal of Environmental Chemical Engineering. 15, 123–131
  10. Ngatijo, N., Basuki, R., Nuryono, N., Rusdiarso, B., 2019. Comparison of Au(III) Sorption on Amine-Modified Silica (AMS) and Quaternary Amine-Modified Silica (QAMS): A Thermodynamic and Kinetics Study. Indonesian Journal of Chemistry. 19, 337–346
  11. Ngatijo, N., Basuki, R., Rusdiarso, B., Nuryono, N., 2020a. Sorption-desorption profile of Au (III) onto silica modified quaternary amines (SMQA) in gold mining effluent.Journal of Environmental Chemical Engineering. 8, 103747
  12. Ngatijo, N., Bemis, R., Aziz, A., Basuki, R., 2020b. Reinforcement of Quaternary Ammonium Modified Silica (QAMS) with Magnetite and its Application by Solid Phase Adsorption (SPA) to Adsorb Chromate Ions. Jurnal Kimia Sains dan Aplikasi. 23, 338–345
  13. Ngatijo, N., Nuryono, N., Faried, F., Batubara, U.M., Ula, S.M., Sari, I.P., 2017. Pembuatan Lahan Percontohan Tanaman Padi (Oriza Sativa L.) melalui Recovery Logam Berat. CHEMPUBLISH J. 2, 1–10
  14. Ningsih, D.A., Said, I., Ningsih, P., 2016. Adsorpsi logam timbal (Pb) dari larutannya dengan menggunakan adsorben dari tongkol jagung. Jurnal Akademika Kimia. 5, 55–60
  15. Nuryono, N., Rosiati, N.M., Rusdiarso, B., Sakti, S.C.W., Tanaka, S., 2014. Coating of magnetite with mercapto modified rice hull ash silica in a one-pot process. Springerplus. 3, 515
  16. Qadrini, L., 2020. Penyerapan Ion Logam Merkuri Menggunakan Arang Aktif Limbah Kulit Pisang Kepok (Musa paradisiaca Formatypica). KOVALEN Journal Reserch of Chemist. 6, 39–44
  17. Rabie, A.M., Abd El-Salam, H.M., Betiha, M.A., El-Maghrabi, H.H., Aman, D., 2019. Mercury removal from aqueous solution via functionalized mesoporous silica nanoparticles with the amine compound. Egypt. Jurnal. Pet. 28, 289–296
  18. Rhani, H.C., others, 2012. Faktor Faktor yang Berhubungan dengan Kadar Merkuri (Hg) pada Tanah Pemukiman Warga di Sekitar Lokasi Penambangan Emas Tradisional (Studi Kasus di Desa Jendi, Kecamatan Selogiri, Kabupaten Wonogiri, Provinsi Jawa Tengah). Jurnal Kesehatan Masyarakat Universitas Diponegoro. 1, 18738
  19. Rikhanatul, F.P., 2018. Penurunan Logam Hg Dalam Air Dengan Kombinasi Adsorpsi dan Fitoremediasi Menggunakan Biosorben Serat Eceng Gondok (Eichhornia crassipes) Dan Tanaman Melati Air (Echinodorus palaefolius) Di Dalam Sistem Sub-Surface Flow Constructed Wetland. Universitas Gadjah Mada
  20. Roesmer, J., Kruger, P., 1960. The radiochemistry of mercury
  21. Rusdiarso, B., Basuki, R., 2020. Stability Improvement of Humic Acid as Sorbent through Magnetite and Chitin Modification. Jurnal Kimia Sains dan Aplikasi. 23, 152–159
  22. Sembel, D.T., 2015. Toksikologi Lingkungan Dampak Pencemaran dari Berbagai Bahan Kimia dalam Kehidupan Sehari-hari. Yogyakarta Andi
  23. Silverstein, R.M., Webster, F.X., Kiemle, D.J., 2005. Proton NMR spectrometry. Spectrom. Identif. Org. Compd. 7th ed.; John Wiley Sons Inc. New York, NY, USA 142
  24. Spiridonova, T., Mardjan, M., Ridha, A., 2020. Perbandingan Efektivitas Zeolit dan Karbon Aktif dalam Menurunkan Kadar Merkuri (Hg) dengan Metode Penyaringan pada Air Sungai Mandor. JUMANTIK Jurnal Mahasiswa dan Peneliti Kesehatan. 6, 50–58
  25. Syamsur, N.N., Ihsan, I., Sahara, S., 2018. Pengolahan Limbah Cair Laboratorium Kimia dengan Menggunakan Metode Elektrokoagulasi dan Koagulan Biji Kelor. JFT Jurnal Fisika dan Terapan. 5, 119–127
  26. Syidiq, A.B., Amiruddin, A., Sirih, H.M., 2016. Jenis Penyakit Yang Diderita Penambang Emas Tradisional Pada Daerah Aliran Sungai Watu-Watudi Kecamatan Lantari Jayakabupaten Bombana. AMPIBI J. Alumni Pendidik. Biol. 1, 65–70
  27. Widjonarko, D.M., Jumina, J., Kartini, I., Nuryono, N., 2014. Phosphonate Modified Silica for Adsorption of Co (II), Ni (II), Cu (II), and Zn (II). Indones. Journal of Chemist. 14, 143–151
  28. Widodo, A., 2011. Upaya Perolehan Emas dengan Metode Amalgamasi Tidak Langsung. Studi Kasus Pertambangan Rakyat Desa Waluran Kecamatan Waluran Kabupaten Sukabumi. Bulletin of Environmental Geology. 21, 83–96
  29. Winarno, T., Ali, R.K., Langit, W.R., 2020. Potensi Pembentukan Air Asam Tambang Pada PIT 3000, Blok Toraja, PT Trubaindo Coal Mining Berdasarkan Studi Karakteristik Geokimia dan Mineralogi Batuan Overburden dan Underburden. Jurnal Presipitasi : Media Komunikasi dan Pengembangan Teknik Lingkungan. 17, 52–61
  30. Zaki, M., 2017. Penyisihan Ion Logam Merkuri (Hg2+) menggunakan Adsorben Berbahan Baku Limbah Pertanian dan Gulma Tanaman. Journal Teknik Kimia. USU 6, 7–11
  31. Zhang, X., Zhang, P., Wu, Z., Zhang, L., Zeng, G., Zhou, C., 2013. Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering. 435, 85–90
  32. Zhou, Z., 2013. Mercury stabilization using thiosulfate or selenosulfate (Doctoral Dissertation). University of British Columbia

Last update:

  1. Efficient mercury removal from aqueous solutions using carboxylated Ti3C2T MXene

    Ali Pournaghshband Isfahani, Ahmad A. Shamsabadi, Farbod Alimohammadi, Masoud Soroush. Journal of Hazardous Materials, 434 , 2022. doi: 10.1016/j.jhazmat.2022.128780

Last update: 2025-01-22 17:04:29

No citation recorded.