skip to main content

Challenges in using Electrocoagulation Process in Removal of Nickel Metal in Wastewater: a Literature Review

*Muhammad Ghozali Harahap  -  Institut Teknologi Bandung, Indonesia
Muhammad Sonny Abfertiawan  -  Institut Teknologi Bandung, Indonesia
Mindriany Syafila  -  Institut Teknologi Bandung, Indonesia

Citation Format:
Abstract

In recent years, the surge in nickel production, driven by the growing demand for electric vehicle batteries, has raised concerns regarding environmental consequences. The nickel mining and processing industries contribute to increased nickel levels in wastewater, presenting a serious threat to aquatic ecosystems and human health. This article emphasizes the urgency of developing effective technologies for treating nickel-contaminated wastewater. Electrocoagulation emerges as a promising method, providing high efficiency, minimal sludge production, and cost-effectiveness. The article critically and systematically reviews the potential of the electrocoagulation process in nickel removal from wastewater. In the review, we identify and analyze nearly 32 studies published from 2013 to 2023. We discuss contaminant removal mechanisms and analyze trends in the use of operational parameters. This article identifies the most commonly applied conditions: aluminum electrodes, inter-electrode spacing ≥ 1 cm, current density ≤ 10 mA/cm², initial pH 6 ≤ pH < 11, electrolysis time < 60 min, batch operation, and initial nickel concentration > 50 mg/L. This comprehensive review serves as a foundational resource for advancing electrocoagulation technology in the removal of heavy metals from nickel wastewater.

Fulltext View|Download
Keywords: Electrocoagulation; nickel, wastewater treatment

Article Metrics:

  1. Abdel-Shafy, H. I., Morsy, R. M., Hewehy, M. A., Razek, T. M., & Hamid, M. M. 2022. Treatment of industrial electroplating wastewater for metals removal via electrocoagulation continous flow reactors. Water Practice & Technology, 17(2), 555-566
  2. Adou, K. E., Kouakou, A. R., Ehouman, A. D., Tyagi, R. D., Drogui, P., & Adouby, K. 2022. Coupling anaerobic digestion process and electrocoagulation using iron and aluminium electrodes for slaughterhouse wastewater treatment. Scientific African, 16, e01238
  3. Al-Shannag, M., Al-Qodah, Z., Bani-Melhem, K., Qtaishat, M. R., & Alkasrawi, M. 2015. Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance. Chemical Engineering Journal, 260, 749-756
  4. Alam, P. N., Pasya, H. L., Aditya, R., Aslam, I. N., & Pontas, K. 2022. Acid mine wastewater treatment using electrocoagulation method. Materials Today: Proceedings, 63, S434-S437
  5. Alavijeh, H. N., Sadeghi, M., Kashani, M. R. K., & Moheb, A. 2022. Efficient chemical coagulation-electrocoagulation-membrane filtration integrated systems for baker's yeast wastewater treatment: experimental and economic evaluation. Cleaner Chemical Engineering, 3, 100032
  6. Altunay, S., Kiliç, İ. H., Öden, M. K., & Çakmak, B. 2021. Pollutant removal from mining processing wastewater by electrochemical method. Global NEST Journal, 23(2), 178-185
  7. Aoudj, S., Khelifa, A., Drouiche, N., Belkada, R., & Miroud, D. J. C. E. J. 2015. Simultaneous removal of chromium (VI) and fluoride by electrocoagulation–electroflotation: application of a hybrid Fe-Al anode. Chemical Engineering Journal, 267, 153-162
  8. Apshankar, K. R., & Goel, S. (2018). Review and analysis of defluoridation of drinking water by electrocoagulation. Journal of Water Supply: Research and Technology—AQUA, 67(4), 297-316
  9. Arabameri, A., Moghaddam, M. R. A., Azadmehr, A. R., & Shabestar, M. P. 2022. Less energy and material consumption in an electrocoagulation system using AC waveform instead of DC for nickel removal: Process optimization through RSM. Chemical Engineering and Processing-Process Intensification, 174, 108869
  10. Asfaha, Y. G., Tekile, A. K., & Zewge, F. 2021. Hybrid process of electrocoagulation and electrooxidation system for wastewater treatment: a review. Cleaner Engineering and Technology, 4, 100261
  11. Babu, J.M., Goel, S., 2013. Defluoridation of drinking water in batch and contineous-flow electrocoagulation systems. Pollut. Res. 32, 727–736
  12. Bazrafshan, E., Mohammadi, L., Ansari-Moghaddam, A., & Mahvi, A. H. 2015. Heavy metals removal from aqueous environments by electrocoagulation process–a systematic review. Journal of environmental health science and engineering, 13, 1-16
  13. Beyazit, N. (2014). Plating Effluent by Electrocoagulation. International Journal of Electrochemical Science, 9(8), 4315-4330
  14. Biswas, B., & Goel, S. (2022). Electrocoagulation and electrooxidation technologies for pesticide removal from water or wastewater: A review. Chemosphere, 302, 134709
  15. Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separation and purification Technology, 38(1), 11-41
  16. Chen, Y. M., Jiang, W. M., Liu, Y., & Kang, Y. 2020. Quantitative contribution study and comparison between electrocoagulation, anode-electrocoagulation and chemical coagulation using polymer-flooding sewage. Chemosphere, 250, 126128
  17. Costa, J. M., da Costa, J. G. D. R., & de Almeida Neto, A. F. 2022. Techniques of nickel (II) removal from electroplating industry wastewater: Overview and trends. Journal of Water Process Engineering, 46, 102593
  18. Djaenudin, Muchlis, & Ardeniswan. 2018. Nickel removal from electroplating wastewater using electrocoagulation. In IOP Conference Series: Earth and Environmental Science Vol. 160, No. 1, p. 012016. IOP Publishing
  19. Drogui, P., Blais, J.-F., & Mercier, G. 2007. Review of electrochemical technologies for environmental applications. Recent Patents on Engineering, 1(3), 257–272
  20. El-Ashtoukhy, E. Z., Amin, N. K., Fouad, Y. O., & Hamad, H. A. 2020. Intensification of a new electrocoagulation system characterized by minimum energy consumption and maximum removal efficiency of heavy metals from simulated wastewater. Chemical Engineering and Processing-Process Intensification, 154, 108026
  21. Esfandian, H., Samadi-Maybodi, A., Khoshandam, B., & Parvini, M. 2017. Experimental and CFD modeling of diazinon pesticide removal using fixed bed column with Cu-modified zeolite nanoparticle. Journal of the Taiwan Institute of Chemical Engineers, 75, 164-173
  22. Fan, Y., Tegladza, I. D., Zhang, G., Dai, H., Liao, B., & Lu, J. 2023. The in-situ and ex-situ adsorption of iron flocs generated by electrocoagulation: Application for nickel, fluoride and methyl orange removal. Journal of Water Process Engineering, 51, 103395
  23. Fil, B. A., Elgün, C., Cihan, S. A., Günaslan, S., & Yılmaz, A. E. 2022. Investigation of Nickel Removal from Heavy Metal Containing Industrial Wastewater by Electrocoagulation Method. Journal of Electrochemical Science and Technology, 13(4), 424-430
  24. Garcia-Segura, S., Eiband, M. M. S., de Melo, J. V., & Martínez-Huitle, C. A. 2017. Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies. Journal of Electroanalytical Chemistry, 801, 267-299
  25. Genethliou, C., Tatoulis, T., Charalampous, N., Dailianis, S., Tekerlekopoulou, A. G., & Vayenas, D. V. 2023. Treatment of raw sanitary landfill leachate using a hybrid pilot-scale system comprising adsorption, electrocoagulation and biological process. Journal of Environmental Management, 330, 117129
  26. Hakizimana, J. N., Gourich, B., Chafi, M., Stiriba, Y., Vial, C., Drogui, P., & Naja, J. 2017. Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination, 404, 1–21
  27. Hasan, F. 2022. Removal of Total Suspended Solids (TSS) in coal mine water by electrocoagulation technique. Final Project of Bachelor Program, Bandung Institute of Technology
  28. Hernaningsih, T., & Yudo, S. 2007. Alternatif Teknologi Pengolahan Air Untuk Memenuhi Kebutuhan Air Bersih Di Daerah Pemukiman Nelayan Studi Kasus Perencanaan Penyediaan Air Bersih Di Daerah Pedesaaan Nelayan Kab. Pasir, Kalimantan Timur. Jurnal Air Indonesia, 3(1)
  29. Holt, P. K., Barton, G. W., & Mitchell, C. A. 2004. Deciphering the science behind electrocoagulation remove suspended clay particles from water. Water Science and Technology, 50(12), 177-184
  30. Huang, C. H., Shen, S. Y., Dong, C. D., Kumar, M., & Chang, J. H. 2020. Removal mechanism and effective current of electrocoagulation for treating wastewater containing Ni (II), Cu (II), and Cr (VI). Water, 12(9), 2614
  31. Islam, S. D. U. 2023. Electrochemical remediation of arsenic and fluoride from water: A review of the current state and future prospects. Environmental Technology & Innovation, 103148
  32. Islam, S. M. D.-U. (2019). Electrocoagulation (EC) technology for wastewater treatment and pollutants removal. Sustainable Water Resources Management, 5(1), 359–380
  33. Jerroumi, S., Lekhlif, B., Jamal, J. E., Lakhdar, M., & Afrine, L. 2019. Investigation of electrocoagulation on the removal of nickel in waste water from an electroplating bath using aluminium and iron electrodes. Moroccan Journal of Chemistry, 7(4), 7-4
  34. Kamal, I. 2018. Effluent processing of Clover WWTP as recycled water Using electrocoagulation with aluminum electrodes. Thesis of Master Program, Bandung Institute of Technology
  35. Khandegar, V., & Saroha, A. K. 2013. Electrocoagulation for the treatment of textile industry effluent–a review. Journal of environmental management, 128, 949-963
  36. Khandegar, V., & Saroha, A. K. 2013. Electrocoagulation for the treatment of textile industry effluent–a review. Journal of environmental management, 128, 949-963
  37. Khosa, M. K., Jamal, M. A., Hussain, A., Muneer, M., Zia, K. M., & Hafeez, S. 2013. Efficiency of aluminum and iron electrodes for the removal of heavy metals [(Ni (II), Pb (II), Cd (II)] by electrocoagulation method. Journal of the Korean Chemical Society, 57(3), 316-321
  38. Kim, T., Kim, T. K., & Zoh, K. D. 2020. Removal mechanism of heavy metal (Cu, Ni, Zn, and Cr) in the presence of cyanide during electrocoagulation using Fe and Al electrodes. Journal of Water Process Engineering, 33, 101109
  39. Kobya, M., Demirbas, E., Gebologlu, U., Oncel, M. S., & Yildirim, Y. 2013. Optimization of arsenic removal from drinking water by electrocoagulation batch process using response surface methodology. Desalination and Water Treatment, 51(34-36), 6676-6687
  40. Kumar, J., Joshi, H., & Malyan, S. K. 2022. Removal of copper, nickel, and zinc ions from an aqueous solution through electrochemical and nanofiltration membrane processes. Applied Sciences, 12(1), 280
  41. Kumar, V., & Dwivedi, S. K. 2021. A review on accessible techniques for removal of hexavalent Chromium and divalent Nickel from industrial wastewater: Recent research and future outlook. Journal of Cleaner Production, 295, 126229
  42. Lekhlif, B., Oudrhiri, L., Zidane, F., Drogui, P., & Blais, J. F. 2014. Study of the electrocoagulation of electroplating industry wastewaters charged by nickel (II) and chromium (VI). J. Mater. Environ. Sci, 5(1), 111-120
  43. Lin, J. Y., Raharjo, A., Hsu, L. H., Shih, Y. J., & Huang, Y. H. 2019. Electrocoagulation of tetrafluoroborate (BF4−) and the derived boron and fluorine using aluminum electrodes. Water research, 155, 362-371
  44. Lingkungan, P. T., Pengkajian, B., & Teknologi, P. 2016. TINJAUAN TEKNOLOGI PENGOLAHAN AIR LIMBAH INDUSTRI DENGAN PROSES ELEKTROKOAGULASI Taty Hernaningsih. 9(1), 31–46
  45. Liu, S., Ye, X., He, K., Chen, Y., & Hu, Y. 2017. Simultaneous removal of Ni (II) and fluoride from a real flue gas desulfurization wastewater by electrocoagulation using Fe/C/Al electrode. Journal of Water Reuse and Desalination, 7(3), 288-297
  46. Liu, Y., Liu, G., Wang, H., Wu, P., Yan, Q., & Vayenas, D. V. 2021. Elongation the duration of steel anode with polypyrrole modification during the electrocoagulation treatment process of electroplating wastewater. Journal of Environmental Chemical Engineering, 9(2), 104969
  47. Lu, J., Li, Y., Yin, M., Ma, X., & Lin, S. 2015. Removing heavy metal ions with continuous aluminum electrocoagulation: A study on back mixing and utilization rate of electro-generated Al ions. Chemical Engineering Journal, 267, 86-92
  48. Mamelkina, M. A., Vasilyev, F., Tuunila, R., Sillanpää, M., & Häkkinen, A. 2019. Investigation of the parameters affecting the treatment of mining waters by electrocoagulation. Journal of Water Process Engineering, 32, 100929
  49. Merma, A. G., Santos, B. F., Rego, A. S., Hacha, R. R., & Torem, M. L. 2020. Treatment of oily wastewater from mining industry using electrocoagulation: fundamentals and process optimization. Journal of Materials Research and Technology, 9(6), 15164-15176
  50. Moersidik, S. S., Nugroho, R., Handayani, M., & Pratama, M. A. 2020. Optimization and reaction kinetics on the removal of Nickel and COD from wastewater from electroplating industry using Electrocoagulation and Advanced Oxidation Processes. Heliyon, 6(2)
  51. Mohamad Zailani, L. W., Mohd Amdan, N. S., & Zin, N. S. M. 2018. Removal Efficiency of Electrocoagulation Treatment Using Aluminium Electrode for Stabilized Leachate. IOP Conference Series: Earth and Environmental Science, 140(1), 012049
  52. Mohora, E., Rončević, S., Dalmacija, B., Agbaba, J., Watson, M., Karlović, E., & Dalmacija, M. 2012. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor. Journal of hazardous materials, 235, 257-264
  53. Moussa, D. T., El-Naas, M. H., Nasser, M., & Al-Marri, M. J. 2017. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. Journal of environmental management, 186, 24-41
  54. Mufakhir, F. R., Yuliamsa, I. A., Juniarsih, A., Astuti, W., Sumardi, S., Handoko, A. S., & Petrus, H. T. B. M. 2022. Heavy metals removal in liquid waste from spent-batteries recycling. In IOP Conference Series: Earth and Environmental Science Vol. 1017, No. 1, p. 012004. IOP Publishing
  55. Nur, A. 2014. Recycling of hotel domestic wastewater (grey water) using electrocoagulation of aluminum electrode pairs. Thesis of Master Program, Bandung Institute of Technology
  56. Oden, M. K., & Sari-Erkan, H. 2018. Treatment of metal plating wastewater using iron electrode by electrocoagulation process: Optimization and process performance. Process Safety and Environmental Protection, 119, 207-217
  57. Patel, P., Gupta, S., & Mondal, P. 2022. Electrocoagulation process for greywater treatment: Statistical modeling, optimization, cost analysis and sludge management. Separation and Purification Technology, 296, 121327
  58. Prica, M., Adamovic, S., Dalmacija, B., Rajic, L., Trickovic, J., Rapajic, S., & Becelic-Tomin, M. 2015. The electrocoagulation/flotation study: The removal of heavy metals from the waste fountain solution. Process Safety and Environmental Protection, 94, 262-273
  59. Ridantami, V. 2021. Lead Recovery (Pb) from liquid waste from soil washing using an electrocoagulation process. Thesis of Master Program, Bandung Institute of Technology
  60. Rincon, G. J., & La Motta, E. J. 2014. Simultaneous removal of oil and grease, and heavy metals from artificial bilge water using electro-coagulation/flotation. Journal of Environmental Management, 144, 42-50
  61. Shahedi, A., Darban, A. K., Jamshidi-Zanjani, A., Taghipour, F., & Homaee, M. 2023. Simultaneous removal of cyanide and heavy metals using photoelectrocoagulation. Water, 15(3), 581
  62. Shahedi, A., Darban, A. K., Taghipour, F., & Jamshidi-Zanjani, A. 2020. A review on industrial wastewater treatment via electrocoagulation processes. Current Opinion in Electrochemistry, 22, 154–169
  63. Shim, H. Y., Lee, K. S., Lee, D. S., Jeon, D. S., Park, M. S., Shin, J. S., Lee, Y. K., Goo, J. W., Kim, S. B., & Chung, D. Y. 2014. Application of electrocoagulation and electrolysis on the precipitation of heavy metals and particulate solids in washwater from the soil washing. Journal of Agricultural Chemistry and Environment, 3(04), 130
  64. Song, P., Yang, Z., Zeng, G., Yang, X., Xu, H., Wang, L., & Ahmad, K. 2017. Electrocoagulation treatment of arsenic in wastewaters: a comprehensive review. Chemical Engineering Journal, 317, 707-725
  65. Stylianou, M., Montel, E., Zissimos, A., Christoforou, I., Dermentzis, K., & Agapiou, A. 2022. Removal of toxic metals and anions from acid mine drainage (AMD) by electrocoagulation: The case of North Mathiatis open cast mine. Sustainable Chemistry and Pharmacy, 29, 100737
  66. Titchou, F. E., Zazou, H., Afanga, H., El Gaayda, J., Akbour, R. A., & Hamdani, M. 2021. Removal of persistent organic pollutants (POPs) from water and wastewater by adsorption and electrocoagulation process. Groundwater for Sustainable Development, 13, 100575
  67. Vargas, A. R., Guillen, C. S., Haynes, M. E. M., & AlJaberi, F. Y. 2023. Nickel removal from an industrial effluent by electrocoagulation in semi-continuous operation: Hydrodynamic, kinetic and cost analysis. Results in Engineering, 17, 100961
  68. Vargas, A. R., Haynes, M. E. M., Guillen, C. S., & AlJaberi, F. Y. A. 2023. Removal of nickel from Ni (II)-NH3-SO2-CO2-H2O system by electrocoagulation, sedimentation and filtration processes. Journal of Electrochemical Science and Engineering, 13(2), 373-391
  69. Vargas, A. R., Medina, M. P., Vives, A. G., Barka, N., & Riverón, A. R. 2022. Nickel removing by electrocoagulation of Ni (II)-NH3-CO2-SO2-H2O system. Kinetics, isothermal, mechanism and estimated cost of operation. Acta Chimica Slovenica, 69(3), 536-551
  70. Vlachou, M., Hahladakis, J., & Gidarakos, E. 2013. Effect of various parameters in removing Cr and Ni from model wastewater by using electrocoagulation. Global NEST Journal, 15(4), 494-503
  71. Wang, C., Li, T., Yu, G., & Deng, S. 2021. Removal of low concentrations of nickel ions in electroplating wastewater using capacitive deionization technology. Chemosphere, 284, 131341
  72. Xu, L., Xu, X., Cao, G., Liu, S., Duan, Z., Song, S., & Zhang, M. 2018. Optimization and assessment of Fe–electrocoagulation for the removal of potentially toxic metals from real smelting wastewater. Journal of environmental management, 218, 129-138
  73. Ye, X., Zhang, J., Zhang, Y., Lv, Y., Dou, R., Wen, S., & Hu, Y. 2016. Treatment of Ni-EDTA containing wastewater by electrocoagulation using iron scraps packed-bed anode. Chemosphere, 164, 304-313
  74. Zaied, B. K., Rashid, M., Nasrullah, M., Zularisam, A. W., Pant, D., & Singh, L. 2020. A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. Science of the Total Environment, 726, 138095

Last update:

No citation recorded.

Last update: 2024-11-22 15:34:15

No citation recorded.