skip to main content

The Effect of adding Coconut Shells and Corn Husk to Biobriquettes from Fish Bone Waste

Ayu Nindyapuspa  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
*Vivin Setiani orcid publons  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Dhea Ayu Firnanda  -  Politeknik Perkapalan Negeri Surabaya, Indonesia

Citation Format:
Abstract

Biomass generates a large amount of waste. One of these is fish bones, corn husks, and coconut shells. Fish bone waste has the potential to be used as biobriquettes because it contains 10.16% carbon. To maximize the potential of fish bone waste, it should be mixed with corn husks and coconut shells. In addition, more calories can be added to the biobriquettes.  In the manufacture of biobriquettes, pyrolysis temperature also affects the quality of the resulting biobriquettes. The purpose of this study was to determine the quality of biobriquettes with a mixture of fish bones, corn husks, and coconut shells at 5000C and 3500C. The compositions of the biobriquette materials used in this study were 100% fish bone waste, fish bone:coconut shell waste (50:50), and fish bone waste:corn husk (50:50). The results of the study showed that biobriquettes with a mixture of fish bones and coconut shell 50:50 at a pyrolysis temperature of 350 °C had the best quality according to SNI 01-6235-2000 concerning wood charcoal briquettes. The water content and calorific value were 1.93% and 5,913.6 cal/g, respectively. The addition of coconut shells and corn husks affected the characteristics of biobriquettes made from fish bone waste. 

Fulltext View|Download
Keywords: Biobriquettes; coconut shells; corn husk; fish bone; pyrolysis

Article Metrics:

Article Info
Section: Original Research Article
Language : EN
  1. Anggraeni, S., Girsang, G.C.S., Nandiyanto, A.B.D., Bilad, M.R., 2021. Effects of particle size and composition of sawdust/carbon from rice husk on the briquette performance. Indonesian Journal of Science and Technology 16(3), 2298–2311
  2. Arafah, A.D., Harsono, S.S., 2021. Analysis the effect of coconut shell charcoal mixed doses and adhesive in characteristics jamu dregs briquettes. Berkala SAINSTEK 9(4), 179–185
  3. Badan Standarisasi Nasional, 1995. Standar nasional 06-3730-1995 tentang arang aktif teknis. Jakarta: Badan Standarisasi Nasional
  4. Badan Standarisasi Nasional, 2000. Standar nasional 01-6235-2000 tentang briket arang kayu. Jakarta: Badan Standarisasi Nasional
  5. Badan Standarisasi Nasional, 2000. Standar nasional 19-71172-2005 tentang emisi gas buang – sumber tidak bergerak – bagian 2. Jakarta: Badan Standarisasi Nasional
  6. Badan Standarisasi Nasional, 2000. Standar nasional 19-7117.5-2005. Penentuan lokasi dan titik-titik lintas pengambilan contoh uji partikel. Jakarta: Badan Standarisasi Nasional
  7. Hakika, D.C., Jamilatuna, S., Zahira, S., Setyarini, R., Rahayu, A., Ardiansyah, R.S., 2023. Combustion quality analysis of bio-briquettes from mixture of coconut shell waste and coal with tapioca flour adhesive. Indonesian Journal of Chemical Engineering 1(1), 1–10
  8. Djafaar, R.P., 2016. Pengaruh temperatur terhadap karakteristik briket bioarang dari campuran sampah kebun dan kulit kacang tanah dengan tambahan minyak jelantah
  9. Ekayuliana, A., Hidayati, N., 2020. Analisis nilai kalor dan nilai ultimate briket sampah organik dengan bubur kertas. Jurnal Mekanik Terapan 1(2), 107–115
  10. Firnanda, D.A., 2023. Pemanfaatan biomassa limbah tulang ikan, tempurung kelapa, dan kulit jagung sebagai biobriket menggunakan metode pirolisis. Laporan Tugas Akhir. Teknik Pengolahan Limbah, Politeknik Perkapalan Negeri Surabaya
  11. Hafiza, H.N., Masthura, M., Jumiati, E., 2023. Effect of density on water content of making corn skin and cob biocharcoal briquettes. Buletin Fisika 25(1), 130–134
  12. Hayati, N., 2018. Optimasi kondisi pirolisis dan pengeringan pada proksimat arang tempurung kelapa dengan metode taguchi. Simetris 12(1), 6–12
  13. Haykiri Acma, H., Yaman, S., Kucukbayrak, S., 2013. Production of biobriquettes from carbonized brown seaweed. Fuel Processing Technology, 33–40
  14. Iskandar, N., Nugroho, S., Feliyana, M.F., 2019. Uji kualitas produk briket arang tempurung kelapa berdasarkan standar mutu SNI. Momentum 15
  15. Jannah, B.L., Pangga, D., Ahzan, S., 2022. Pengaruh jenis dan persentase bahan perekat biobriket berbahan dasar kulit durian terhadap nilai kalor dan laju pembakaran. Lensa Jurnal Kependidikan Fisika 10, 16–23
  16. Loppies, J.E., 2016. Karakteristik arang kulit buah kakao yang dihasilkan dari berbagai kondisi pirolisis. Jurnal Industri Hasil Perkebunan 11(2), 105–111
  17. Mahidin, Gani, A., Muslim, A., Husin, H., Hani, M.R., Syukur, M., Hamdani, Khairil, Rizal, S., 2016. Sulfur removal in bio-briquette combustion using seashell waste adsorbent at low temperature. Journal of Engineering Technology Science 48(4), 465–481
  18. Nikiema, J., Asamoah, B., Egblewogbe, M.N., Akomea-Agyin, J., Cofie, O.O., Hughes, A.F., Njenga, M., 2022. Impact of material composition and food waste decomposition on characteristics of fuel briquettes. Resources, Conservation and Recycling Advances 15, 200095
  19. Pane, J.P., Junary, E., Herlina, N., 2015. Pengaruh konsentrasi perekat tepung tapioka dan penambahan kapur dalam pembuatan briket arang berbahan baku pelepah aren (Arenga pinnata). Jurnal Teknik Kimia USU 4(2), 32–38
  20. Peraturan Menteri Republik Indonesia No. 41 Tahun 1999. Baku mutu udara ambien nasional
  21. Peraturan Menteri Energi dan Sumber Daya Mineral No. 47 Tahun 2006. Pedoman pembuatan dan pemanfaatan briket batubara dan bahan bakar padat berbasis batubara
  22. Peraturan Gubernur Jawa Timur No. 10 Tahun 2009. Baku mutu udara ambien dan emisi sumber tidak bergerak
  23. Pratiwi, V.D., Mukhaimin, I., 2021. Pengaruh suhu dan jenis perekat terhadap kualitas biobriket dari ampas kopi dengan metode torefaksi. Chemical Engineering Research Articles 4(1), 39–50
  24. Qistina, I., Sukandar, D., Trilaksono, T., 2016. Kajian kualitas briket biomassa dari sekam padi dan tempurung kelapa. Jurnal Kimia Valensi 0, 136–142
  25. Reza, M.S., Azad, A.K., Bakar, M.S.A., Karim, M.R., Sharifpur, M., Taweekun, J., 2022. Evaluation of thermochemical characteristics and pyrolysis of fish processing waste for renewable energy feedstock
  26. Ridhuan, K., Irawan, D., Setiawan, R., 2020. Comparison of types and size of biomass on pyrolysis combustion toward the results of bio-charcoal and liquid smoke. Journal of Engineering and Scientific Research 2(1), 10–15
  27. Ristianingsih, Y., Ulfa, A., S., R.S.K., 2015. Pengaruh suhu dan konsentrasi perekat terhadap karakteristik briket bioarang berbahan baku tandan kosong kelapa sawit dengan proses pirolisis. Konversi 4, 45–51
  28. Setiani, V., Rohmadhani, M., Setiawan, A., Maulidya, R.D., 2019. Potensi emisi dari pembakaran biobriket ampas tebu dan tempurung kelapa. Seminar MASTER PPNS 4(1), 115–118
  29. Tamado, D., Budi, E., Wirawan, R., Dwi, H., Tyaswuri, A., Sulistyani, E., Asma, E., 2013. Sifat termal karbon aktif berbahan arang tempurung kelapa. Prosiding Seminar Nasional Fisika, 73–81
  30. Yiga, V.A., Nuwamanya, A., Birungi, A., Lubwama, M., Lubwama, H.N., 2023. Development of carbonized rice husks briquettes: Synergy between emissions, combustion, kinetics and thermodynamic characteristics. Energy Reports 9, 5977–5991

Last update:

No citation recorded.

Last update: 2025-07-31 11:12:15

No citation recorded.