skip to main content

Environmental Performance of Ammonia Production in Indonesia using Life Cycle Assessment Approach

*Muhammad Rizky Zen  -  Institut Teknologi Sumatera, Indonesia
Agus Adi Putra  -  Chalmers University of Technology, Sweden
Michelle Maria Magdalena Napitupulu  -  PT Cipta Inovasi Berkelanjutan, Indonesia
Chairunnisa Noviarini  -  PT Cipta Inovasi Berkelanjutan, Indonesia
Fano Alfian Ardyansyah  -  PT Cipta Inovasi Berkelanjutan, Indonesia
Cahaya Prautama  -  PT Cipta Inovasi Berkelanjutan, Indonesia

Citation Format:
Abstract

Ammonia is a fundamental component in fertilizer and chemical manufacturing processes around the world, but its production is a significant contributor to CO2 emissions in chemical industry. Implementation of carbon capture utilization and storage (CCUS) offers an alternative decarbonisation strategy to mitigate CO2 emissions in ammonia production. This study assesses the environmental performance of ammonia production through life cycle assessment (LCA) methodology. Environmental impacts are calculated using openLCA software with various impact assessment methods, including CML IA Baseline, Impact 2002+, Recipe 2016 Midpoint (H), and AWARE. The study scope encompasses the cradle-to-grave analysis, from the extraction of raw materials and transportation to ammonia production, main processes, distribution, and consumer product consumption, with a declared unit of 1-kg ammonia product. Our findings showed that CO2 removal and Power Plant in core processes in the core process as the most significant contributors to Global Warming Potential. Therefore, sensitivity analysis was conducted by reducing CO2 emission by 10% and 70% through CCUS implementation. The results showed that the CCUS implementation could reduce Global Warming Potential by up to 43%.

Fulltext View|Download
Keywords: Ammonia production; carbon capture utilization and storage; environmental performance; life cycle assessment; sensitivity analysis
Funding: PT Cipta Inovasi Berkelanjutan (Ailesh)

Article Metrics:

  1. Arora, P., Sharma, I., Hoadley, A., Mahajani, S., & Ganesh, A. 2018. Remote, small-scale, ‘greener’ routes of ammonia production. Journal of Cleaner Production, 199, 177–192
  2. Boero, A. J., Kardux, K., Kovaleva, M., Salas, D. A., Mooijer, J., Mashruk, S., Townsend, M., Rouwenhorst, K., Valera-medina, A., & Ramirez, A. D. 2021. Environmental life cycle assessment of ammonia-based electricity. Energies, 14(20)
  3. Cao, L., Lei, S., Guan, Y., Wang, Y., Zhang, Y., Tian, J., Wang, T., Luo, B., & Ren, T. 2022. CCUS Industry Under Target of Carbon-Peak and Carbon-Neutrality: Progress and Challenges. Frontiers in Energy Research, 10
  4. Cavalcanti, E. J. C., Ribeiro, T. J. S., & Carvalho, M. (2021). Exergoenvironmental analysis of a combined cycle power plant fueled by natural gas from an offshore platform. Sustainable Energy Technologies and Assessments, 46
  5. Chen, S., Liu, J., Zhang, Q., Teng, F., & McLellan, B. C. 2022. A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality. In Renewable and Sustainable Energy Reviews (Vol. 167). Elsevier Ltd
  6. Energy Agency, I. n.d. Energy Technology Perspectives 2020
  7. Erdemir, D., & Dincer, I. 2021. A perspective on the use of ammonia as a clean fuel: Challenges and solutions. International Journal of Energy Research, 45(4), 4827–4834
  8. Facchino, M., Popielak, P., Panowski, M., Wawrzyńczak, D., Majchrzak-Kucęba, I., & De Falco, M. 2022. The Environmental Impacts of Carbon Capture Utilization and Storage on the Electricity Sector: A Life Cycle Assessment Comparison between Italy and Poland. Energies, 15(18)
  9. Ghavam, S., Taylor, C. M., & Styring, P. 2021a. The life cycle environmental impacts of a novel sustainable ammonia production process from food waste and brown water. Journal of Cleaner Production, 320
  10. Ghavam, S., Taylor, C. M., & Styring, P. 2021b. The life cycle environmental impacts of a novel sustainable ammonia production process from food waste and brown water. Journal of Cleaner Production, 320
  11. Hannun, R. M., & Abdul Razzaq, A. H. 2022. Air Pollution Resulted from Coal, Oil and Gas Firing in Thermal Power Plants and Treatment: A Review. IOP Conference Series: Earth and Environmental Science, 1002(1)
  12. Kerr, J., Rayburg, S., Neave, M., & Rodwell, J. 2022. Comparative Analysis of the Global Warming Potential (GWP) of Structural Stone, Concrete and Steel Construction Materials. Sustainability (Switzerland), 14(15)
  13. Khasani, Prasidha, W., Widyatama, A., & Aziz, M. 2021. Energy-saving and environmentally-benign integrated ammonia production system. Energy, 235
  14. Liu, G., Cai, B., Li, Q., Zhang, X., & Ouyang, T. 2022. China’s pathways of CO2 capture, utilization and storage under carbon neutrality vision 2060. In Carbon Management (Vol. 13, Issue 1, pp. 435–449). Taylor and Francis Ltd
  15. Liu, X., Elgowainy, A., & Wang, M. 2020. Life cycle energy use and greenhouse gas emissions of ammonia production from renewable resources and industrial by-products. Green Chemistry, 22(17), 5751–5761
  16. Luis, P. 2016. Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives. In Desalination (Vol. 380, pp. 93–99). Elsevier
  17. MacFarlane, D. R., Cherepanov, P. V., Choi, J., Suryanto, B. H. R., Hodgetts, R. Y., Bakker, J. M., Ferrero Vallana, F. M., & Simonov, A. N. 2020. A Roadmap to the Ammonia Economy. In Joule (Vol. 4, Issue 6, pp. 1186–1205)
  18. Mahmud, M. A. P., Huda, N., Farjana, S. H., & Lang, C. 2020. Life-cycle impact assessment of renewable electricity generation systems in the United States. Renewable Energy, 151, 1028–1045
  19. Makhlouf, A., Serradj, T., & Cheniti, H. 2015. Life cycle impact assessment of ammonia production in Algeria: A comparison with previous studies. Environmental Impact Assessment Review, 50, 35–41
  20. Mehmeti, A., & Canaj, K. 2022. Environmental Assessment of Wastewater Treatment and Reuse for Irrigation: A Mini-Review of LCA Studies. In Resources (Vol. 11, Issue 10). MDPI
  21. Monteiro, J., & Roussanaly, S. 2022. CCUS scenarios for the cement industry: Is CO2utilization feasible? Journal of CO2 Utilization, 61
  22. Morales Mora, M. A., Vergara, C. P., Leiva, M. A., Martínez Delgadillo, S. A., & Rosa-Domínguez, E. R. 2016. Life cycle assessment of carbon capture and utilization from ammonia process in Mexico. Journal of Environmental Management, 183, 998–1008
  23. Muhamad, R., Sari, H. H., & Ellyna, C. 2022. LIFE CYCLE ASSESSMENT OF NATURAL GAS PRODUCTION IN INDONESIA. Journal of Sustainability Science and Management, 17(2), 136–157
  24. Nguyen, T. K. L., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Nguyen, T. V., & Nghiem, D. L. 2020. Contribution of the construction phase to environmental impacts of the wastewater treatment plant. Science of the Total Environment, 743
  25. Parkinson, B., Tabatabaei, M., Upham, D. C., Ballinger, B., Greig, C., Smart, S., & McFarland, E. 2018. Hydrogen production using methane: Techno-economics of decarbonizing fuels and chemicals. International Journal of Hydrogen Energy, 43(5), 2540–2555
  26. PRODUCT CATEGORY RULES (PCR). 2023
  27. Raksajati, A., Ho, M. T., & Wiley, D. E. 2013. Reducing the cost of CO2 capture from flue gases using aqueous chemical absorption. Industrial and Engineering Chemistry Research, 52(47), 16887–16901
  28. Rouwenhorst, K., Castellanos, G., International Renewable Energy Agency., & Ammonia Energy Association. n.d. Innovation outlook: renewable ammonia
  29. Shirmohammadi, R., Aslani, A., Ghasempour, R., & Romeo, L. M. 2020. CO2 utilization via integration of an industrial post-combustion capture process with a urea plant: Process modelling and sensitivity analysis. Processes, 8(9)
  30. Singh, U., & Colosi, L. M. 2021. The case for estimating carbon return on investment (CROI) for CCUS platforms. Applied Energy, 285
  31. Tjahjono, M., Stevani, I., Siswanto, G. A., Adhitya, A., & Halim, I. 2023. Assessing the feasibility of gray, blue, and green ammonia productions in Indonesia: A techno-economic and environmental perspective. International Journal of Renewable Energy Development, 12(6), 1030–1040
  32. van Langevelde, P. H., Katsounaros, I., & Koper, M. T. M. 2021. Electrocatalytic Nitrate Reduction for Sustainable Ammonia Production. Joule, 5(2), 290–294
  33. Wang, P., Shi, B., Li, N., Kang, R., Li, Y., Wang, G., & Yang, L. 2023. CCUS development in China and forecast its contribution to emission reduction. Scientific Reports, 13(1)
  34. Zhang, X., Li, K., Wei, N., Li, Z., & Fan, J. L. 2022. Advances, challenges, and perspectives for CCUS source-sink matching models under carbon neutrality target. In Carbon Neutrality (Vol. 1, Issue 1). Springer
  35. Zhang, Y., Liu, H., Li, J., Deng, Y., Miao, X., Xu, D., Liu, S., Xie, K., & Tian, Y. 2022. Life cycle assessment of ammonia synthesis in China. International Journal of Life Cycle Assessment, 27(1), 50–61

Last update:

No citation recorded.

Last update: 2024-12-04 00:14:11

No citation recorded.