skip to main content

Analysis of Cumulative Energy Demand Potential Using Life Cycle Assessment Approach: A Case Study of XYZ Laboratory

Budi Prasetyo Samadikun scopus  -  Universitas Diponegoro, Indonesia
Syafrudin Syafrudin scopus  -  Universitas Diponegoro, Indonesia
*Retno Hari Wahyuni  -  Universitas Diponegoro, Indonesia

Citation Format:
Abstract

Environmental issues such as ecosystem damage, degradation and climate change require effective environmental management strategy. This study analyzes the cumulative energy demand (CED) potential of the XYZ Laboratory activities using a Life Cycle Assessment (LCA) approach. The LCA methodology, adhering to ISO 14040 and ISO 14044 standards, encompasses goal and scope definition, inventory analysis, impact assesment, and interpretation. Data were collected from XYZ Laboratory's activities during 2023, focusing on four main process units: sample administration, fulfillment of testing laboratory conditions, sample preparation, and instrumentation analysis. The environmental impact of CED was characterized using OpenLCA version 2.0 software with the Ecoinvent database and then calculated using a spreadsheet. The result is XYZ Laboratory have a significant environmental impact. The instrumentation analysis stage and sample preparation stage are the two highest potential impacts of CED with a contribution of 52.559 MJ per analysis service (50.948%) and 35.970 MJ per analysis service (34.867%).The study concludes that significant efforts are required to reduce energy use and environmental impact, suggesting techniques such as good housekeeping, input change, better process control, technology change, on-site reuse and recycling, and production of useful by-products. These strategies aim to enhance energy efficiency of laboratory operations.

Fulltext View|Download
Keywords: CED; LCA; XYZ Laboratory; Energy Efficiency; Environmental Impact

Article Metrics:

  1. Abbass, K., Qasim, M.Z., Song, H., et al. 2022. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ Sci Pollut Res, 29, 42539–42559
  2. Aigner, J.F. and W.L. Gore and Associates. 2022. Comparative life cycle assessment (LCA): Packaging solutions for the food segment. Ramboll
  3. Agilent Technologies. 2022. 6475 triple quadrupole LC/MS - Agilent ACT labeled products. Available at: https://www.agilent.com/about/mygreenlab/en/act-6475-triple-quadrupole-LC-MS.html
  4. Aimin, P., Si, X. and Haider, Z.S.A. 2024. Environmental impact of energy imports: Natural resources income and natural gas production profitability in the Asia-Pacific economic cooperation countries. Journal of Cleaner Production, 130735
  5. Arba, Y. 2022. Perbandingan pemodelan perangkat lunak life cycle assessment (LCA) untuk teknologi energi. JEBT Jurnal Energi Baru dan Terbarukan, 3(2), 14001
  6. Balai Besar POM di Semarang. 2023. Laporan tahunan 2023 Balai Besar POM di Semarang
  7. Baldini, C., Gardoni, D. and Guarino, M. 2017. A critical review of the recent evolution of life cycle assessment applied to milk production. Journal of Cleaner Production, 140, 421–435
  8. Belyanovskaya, A.I., Laratte, B., Rajput, V.D., Perry, N. and Baranovskaya, N.V. 2020. The innovation of the characterisation factor estimation for LCA in the USETOX model. Journal of Cleaner Production, 270, 122432
  9. Brown, M. and Davis, T. 2019. Instrumentation analysis in modern laboratories. Analytical Instruments Journal, 30(2), 12-20
  10. Dewi, M.A. 2022. Rancangan strategi produksi bersih untuk mengurangi pemborosan energi listrik dan air pada produksi air minum dalam kemasan (AMDK) di UD Puji Tirta Husada. S2 Thesis, Universitas Atma Jaya Yogyakarta
  11. Ecoinvent. 2024. Impact assessment - Knowledge base. Ecoinvent. Available at: https://support.ecoinvent.org/impact-assessment
  12. EPA.gov. 2024. Environmental management systems. Available at: https://www.epa.gov/ems
  13. Frischknecht, R., Wyss, F., Büsser Knöpfel, S., Lützkendorf, T. and Balouktsi, M. 2015. Cumulative energy demand in LCA: The energy harvested approach. International Journal of Life Cycle Assessment, 20(5), 957-969
  14. Handayani, S. et al. 2024. Penegakan hukum lingkungan di Indonesia: Tantangan dan solusi. Jurnal Hukum Lingkungan Indonesia, 2(1), 72-94
  15. Hauschild, M.Z., Bonou, A. and Olsen, S.I. 2018. Life cycle interpretation. Life cycle assessment: Theory and practice, 323-334
  16. International Organization for Standardization. 2006. Environmental management – Life cycle assessment: Principles and framework ISO 14040. Geneva: European Committee for Standardization
  17. International Organization for Standardization. 2006. Environmental management – Life cycle assessment: Principles and framework ISO 14044. Geneva: European Committee for Standardization
  18. Izhar, T.N.T. 2020. Life cycle analysis of plastic packaging. IOP Conference Series: Earth and Environmental Science, 616(1), 012036
  19. Johnson, K. and Smith, J. 2020. Effective sample management practices. Laboratory Science Journal, 20(1), 15-25
  20. Kementerian Lingkungan Hidup dan Kehutanan. 2021. Penyusunan laporan penilaian daur hidup (LCA). Jakarta
  21. Ketkale, H. and Simske, S. 2023. A life cycle analysis and economic cost analysis of corrugated cardboard box reuse and recycling in the United States. Resources, 12(2), 22
  22. Kim, J. and Lee, S. 2020. Regulatory requirements for laboratory environments. Regulatory Compliance Journal, 15(2), 10-20
  23. Lee, S. and Kim, J. 2020. Importance of environmental conditions in laboratories. Environmental Control Journal, 20(3), 8-18
  24. Mahath, C.S., Kani, K.M. and Dubey, B. 2019. Gate-to-gate environmental impacts of dairy processing products in Thiruvananthapuram, India. Resources, Conservation & Recycling, 141, 40–53
  25. Marczak, H. 2022. Energy inputs on the production of plastic products. Journal of Ecological Engineering, 23(9), 146-156
  26. Marendra, F., Rahmada, A. and Prasetya, A. 2018. Kajian dampak lingkungan pada sistem produksi listrik dari limbah buah menggunakan life cycle assessment. Jurnal Rekayasa Proses Research article, 12(2), 85-97
  27. Motsch, et al. 2021. AAS submodels for "drilling" and "energy efficiency" according to. Available at: https://www.researchgate.net/figure/AAS-submodels-for-Drilling-and-Energy-efficiency-according-to-23_fig1_355899196
  28. Naimah, K. et al. 2023. Analisis sistem pencahayaan pada gedung kuliah umum lantai 3 Institut Teknologi Sumatera. Energi dan Kelistrikan: Jurnal Ilmiah, 15(1), 24-25
  29. Napolitano-Tabares, P.I., Negrín-Santamaría, I., Gutiérrez-Serpa, A. and Pino, V. 2021. Recent efforts to increase greenness in chromatography. Current Opinion in Green and Sustainable Chemistry, 32, 100536
  30. Smith, J. and Johnson, K. 2020. Sample administration in laboratory settings. Journal of Laboratory Management, 10(3), 1-10
  31. United Nations Press. 2022. As humanity’s environment footprint becomes increasingly unsustainable, global leaders recommit to joint climate action, at opening of Stockholm Summit. United Nations Press. Available at: https://press.un.org/en/2022/envdev2046.doc.htm.ipcc.ch
  32. Yang, X., Abkar, M., Zang, W. and William, A. 2024. Computational fluid dynamics: Its carbon footprint and role in carbon emission reduction. Physics, soc-ph arXiv:2402.05985v1

Last update:

No citation recorded.

Last update: 2025-01-27 16:09:32

No citation recorded.