skip to main content

Isotope Analysis of 18O and 2H: A Coastal Confined Aquifer Case Study

Vania Salsabila Anabel Nugraheni  -  Universitas Diponegoro, Indonesia
*Narulita Santi orcid scopus  -  Universitas Diponegoro, Indonesia
Thomas Triadi Putranto  -  Universitas Diponegoro, Indonesia
Jenian Marin  -  Universitas Diponegoro, Indonesia
Ahmad Syauqi Hidayatillah  -  , United Kingdom

Citation Format:
Abstract

In 2023, groundwater quality in Semarang declined due to excessive extraction, leading to land subsidence and reduced groundwater availability. Prolonged dry seasons caused drought in ten villages across five sub-districts. This study aims to investigate geological conditions, groundwater flow patterns, and the spatial distribution of pH, TDS, hardness, electrical conductivity, and major ions (Na⁺, Ca²⁺, Cl⁻, and HCO₃⁻). Additionally, it seeks to interpret groundwater evolution through Gibbs diagram analysis and identify groundwater origins using stable isotopes (¹⁸O and ²H). The methodology involves stable isotope analysis to trace groundwater sources and evaluate d-excess values, which are linked to drought conditions and recharge mechanisms. Water chemistry analysis was performed to characterize ion concentrations, while the Gibbs diagram was used to identify the dominant geochemical processes influencing groundwater. The study area comprises claystone, marl, sandstone, volcanic breccia, and alluvium, with 60 sampling points spanning Upper and Lower Semarang. Water types identified include NaHCO₃, NaCl, CaHCO₃, MgHCO₃, and NaSO₄. NaHCO₃ was the most common, followed by NaCl and CaHCO₃. Isotope analysis revealed several points with d-excess <10 (e.g., SB-10L, SB-20L, SA-4, SA-8, SA-29), indicating groundwater recharge from modern rainfall, typically characterized by d-excess values >10. 

Fulltext View|Download
Keywords: Chemical and physical characteristics; d-excess, drought; Semarang groundwater; stable isotopes

Article Metrics:

  1. Appelo, C.A.J., Postma, D., 2013. Geochemistry, Groundwater and Pollution. Boca Raton Crc Press
  2. Barica, J., 1972. Salinization of groundwater in arid zones. Water Research 6, 925–933
  3. Bershaw, J., 2018. Controls on Deuterium Excess across Asia. Geosciences 8, 257
  4. Breuk, D., 1991. Hydrogeology of Salt Water Intrusion. Taylor & Francis
  5. Candra, B., 2007. Pengantar Kesehatan Lingkunagan. EGC
  6. Chebotarev, I.I., 1955. Metamorphism of natural waters in the crust of weathering—1. Geochimica et Cosmochimica Acta 8, 22–48
  7. Craig, H., 1961. Standard for Reporting Concentrations of Deuterium and Oxygen-18 in Natural Waters. Science 133, 1833–1834
  8. Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus 16, 436–468
  9. Direktorat Geologi Tata Lingkungan Kementerian Lingkungan Hidup, 2018. Distribusi Potensi Air Tanah Di Indonesia
  10. Fadly, M., Prayogi, T.E., Mohamad, F., Zulfaris, D.Y., Memed, M.W., Daryanto, A., Abdillah, F., Nasution, E.M., Sudianto, J.R., Giarto, B., Maliki, F., 2017. Groundwater Quality Assessment in Jakarta Capital Region for the Safe Drinking Water. IOP Conference Series: Materials Science and Engineering 180, 012063
  11. Gat, J.R., 1996. OXYGEN AND HYDROGEN ISOTOPES IN THE HYDROLOGIC CYCLE. Annual Review of Earth and Planetary Sciences 24, 225–262
  12. Gat, J.R., Shemesh, A., Tziperman, E., Hecht, A., Georgopoulos, D., Basturk, O., 1996. The stable isotope composition of waters of the eastern Mediterranean Sea. Journal of Geophysical Research: Oceans 101, 6441–6451
  13. Gusti, 2023. Pakar UGM: Penurunan Tanah di Jakarta dan Semarang Perlu Ditangani Secara Komprehensif - Universitas Gadjah Mada [WWW Document]. Universitas Gadjah Mada. URL https://ugm.ac.id/id/berita/23341-pakar-ugm-penurunan-tanah-di-jakarta-dan-semarang-perlu-ditangani-secara-komprehensif/ (accessed 7.18.25)
  14. Herlambang, A., 1996. Kualitas Air Tanah Dangkal di Kabupaten Bekasi (Doctoral dissertation, Tesis). Program Pascasarjana, IPB
  15. Kementerian Kesehatan, 2023. Permenkes no.2 [WWW Document]
  16. Li, J., Liu, J., Pang, Z., Wang, X., 2013. Characteristics of Chemistry and Stable Isotopes in Groundwater of the Chaobai River Catchment, Beijing. Procedia Earth and Planetary Science 7, 487–490
  17. Lin, L., Xie, M., Liang, Y., He, Y., Yuk, G., Luan, T., 2012. Degradation of cypermethrin, malathion and dichlorovos in water and on tea leaves with O3/UV/TiO2 treatment. Food Control 28, 374–379
  18. Liu, F., Huang, G., Sun, J., Jing, J., Zhang, Y., 2016. A New Evaluation Method for Groundwater Quality Applied in Guangzhou Region, China: Using Fuzzy Method Combining Toxicity Index. Water Environment Research 88, 99–106
  19. Marandi, A., Shand, P., 2018. Groundwater chemistry and the Gibbs Diagram. Applied Geochemistry 97, 209–212
  20. Mook, Williem G, 2000. Environmental Isotopes in the Hydrological Cycle
  21. Nuryana, S.D., Akbar, R.M., Asseggaf, A., 2021. Hubungan Litologi dengan Kandungan Kimiawi Airtanah Daerah Kecamatan Bayah, Provinsi Banten. Journal of Geoscience Engineering and Energy (JOGEE) 2, 191–191
  22. Pemkot Semarang, 2025. Website Resmi Pemerintah Kota Semarang [WWW Document]. Semarangkota.go.id. URL https://semarangkota.go.id/p/5264/kemarau_panjang (accessed 7.18.25)
  23. Peng, H., Mayer, B., Harris, S., Krouse, H.R., 2007. The influence of below-cloud secondary effects on the stable isotope composition of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada. Tellus B 59, 698–704
  24. Qian, Y., Hou, Q., Wang, C., Zhen, S., Yue, C., Cui, X., Guo, C., 2023. Hydrogeochemical Characteristics and Groundwater Quality in Phreatic and Confined Aquifers of the Hebei Plain, China. Water 15, 3071–3071
  25. R. Allan Freeze, Cherry, J.A., 1979. Groundwater. Prentice Hall
  26. Rahayuningtyas, U.C., Putranto, T.T., Santi, N., 2023. Analisis Karakteristik Air Tanah Berdasarkan Data Isotop Stabil 18O dan 2H serta Kimia Air di Dataran Aluvial Kota Semarang. Jurnal Ilmu Lingkungan 22, 334–346
  27. Rejekiningrum, P., 2009. Peluang Pemanfaatan Air Tanah untuk Keberlanjutan Sumber Daya Air. Jurnal Sumberdaya Lahan 3, 85–96
  28. Rizqullah, S.R., 2015. Geologi dan Kualitas Air Tanah Berdasarkan Sifat Fisik dan Kimia Daerah Putat dan sekitarnya, Kecamatan Patuk, Kabupaten Gunung Kidul Daerah Istimewa Yogyakarta. Jurnal Ilmiah Geologi PANGEA 5, 153–162
  29. Rosyidie, A., 2013. Banjir: Fakta dan Dampaknya, Serta Pengaruh dari Perubahan Guna Lahan. Journal of Regional and City Planning 24, 241–249
  30. Russefandi, M.A., Gusman, M., 2020. Pemetaan Kualitas Airtanah Berdasarkan Parameter Total Dissolved Solid (TDS) dan Daya Hantar Listrik (DHL) denganMetode Ordinary Kriging Di Kec. Padang Barat, KotaPadang, Provinsi Sumatera Barat. Jurnal Bina Tambang 5, 153–162
  31. Said, H.D., 1988. Hydrogeological Map of Indonesia Sheet VII Semarang (Jawa). Hydrogeological Map of Indonesia
  32. Sarwade, D.V., Nandakumar, M.V., Kesari, M.P., Mondal, N.C., Singh, V.S., Singh, B., 2006. Evaluation of sea water ingress into an Indian atoll. Environmental geology 52, 1475–1483
  33. Setiawan, T., Syah Alam, B.Y.C.S.S., Haryono, E., Hendarmawan, 2020. Hydrochemical and environmental isotopes analysis for characterizing a complex karst hydrogeological system of Watuputih area, Rembang, Central Java, Indonesia. Hydrogeology Journal 28, 1635–1659
  34. Sudaryanto, S., Lubis, R.F., 2011. Penentuan Lokasi Imbuhan Airtanah dengan Pelacak Isotop Stabil 18O dan 2H di Cekungan Airtanah Dataran Rendah Semarang, Jawa Tengah. Jurnal RISET Geologi dan Pertambangan 21, 121–129
  35. Sugeng Widada, 2010. Gejala Intrusi Air Laut di Daerah Pantai Kota Pekalongan. ILMU KELAUTAN Indonesian Journal of Marine Sciences 12, 45–52
  36. Suherman, D., Sudaryanto, S., 2009. Tipe Air untuk Penentuan Aliran Airtanah Vertikal di Lincekungan Jakarta. Jurnal RISET Geologi dan Pertambangan 19, 99–108
  37. Surharyadi, 1994. Geohidrologi (Ilmu Airtanah). Fakultas Geografi Universitas Gadjah Mada, Yogyakarta
  38. Thanden, R.E., Sumadirdja, H., Richards, P., Sutisna, K., 1996. Peta Geologi Lembar Magelang dan Semarang
  39. Wayland, K.G., Long, D.G., Hyndman, D.W., Pijanowski, B.C., Woodhams, S.M., Haack, S.K., 2003. Identifying Relationships between Baseflow Geochemistry and Land Use with Synoptic Sampling and R-Mode Factor Analysis. Journal of Environmental Quality 32, 180–190
  40. White, D.E., Barnes, I., O’Neil, J.R., 1973. Thermal and Mineral Waters of Nonmeteoric Origin, California Coast Ranges. Geological Society of America Bulletin 84, 547–560

Last update:

No citation recorded.

Last update: 2025-11-30 12:45:05

No citation recorded.