skip to main content

Evaluation of Bio-Drying Cow Dung with Inoculation of Bacillus sp. as Refuse Derived Fuel (RDF) Material

Ardiansah Febriantoko  -  IPB University, Indonesia
Anuraga Jayanegara orcid  -  IPB University, Indonesia
*Novia Amalia Sholeha orcid scopus  -  IPB University, Indonesia
Qurrota A'yuni orcid  -  Hacettepe University, Turkey

Citation Format:
Abstract

Global warming, driven in part by livestock manure emissions, poses a major environmental challenge. Refuse Derived Fuel (RDF) offers a waste-to-energy solution by converting solid cow manure into an energy source. This study investigates the impact of Bacillus sp. inoculation on the bio-drying process of cow dung. The main challenge in processing cow manure into RDF is ensuring the moisture content and calorific value meet the minimum RDF standards. Therefore, a bio-drying process is carried out on cow manure to achieve these required standards. Bio-drying performance was assessed based on drying time, moisture content, pH, and calorific value. The results show that inoculation with Bacillus sp.. at 10⁶ log cfu ml⁻¹ kg⁻¹ yielded the most efficient outcome, achieving the fastest drying time (12 days), lowest moisture content (9.64%), optimal pH (7.8), and highest calorific value (2,656.5 kcal/kg). The findings confirm a direct link between moisture reduction and calorific improvement. Hence, bio-dried cow dung treated with inoculation of Bacillus sp. 106 log cfu ml-1 Kg-1 is recommended as a viable RDF material.

Fulltext View|Download
Keywords: Bacillus sp.; bio-drying; cow dung biomass; RDF; thermophilic bacteria; waste to energy

Article Metrics:

  1. Anwar, M.T., Ullah, N., Khalid, S., Ahmad, N., Shahzeb, K.M. 2024. Fuel composites development using cow dung and agricultural biomass. Materials Proceedings 17(1), 23
  2. Bilgin, M., Tulun, S. 2015. Biodrying for municipal solid waste: volume and weight reduction. Environmental Technology, 36:13, 1691-1697
  3. Cai, L., Chen, T., Gao, D., Yu, J. 2016. Bacterial communities and their association with the bio-drying of sewage sludge. Journal Water Research 90, 44 - 51
  4. Cardenas, A., Ammon, C., Schumacher, B., Stinner, W., Herrman, C., Schneider, M., Weinrich, S., Fischer, P., Amon, T., Amon, B. 2021. Methane emissions from the storage of liquid dairy manure: Influences of season, temperature and storage duration. Waste management Vol. 121, 393 – 402
  5. Chaerul, M., Wardhani, A.K. 2020. Refuse Derived Fuel (RDF) dari sampah perkotaan dengan proses biodrying: Review. J. Presipitasi, Vol 17 No 1: 62-74
  6. Fajobi, M.O., Lasode, O.A., Adeleke, A.A., Ikubanni, P.P., Balogun, A.O. 2022. Investigation of physicochemical characteristics of selected lignocellulose biomass. Sci Rep 12, 2918
  7. Heriyanti, A.P., Purwanto, P., Purnaweni, H., Fariz, T.R. 2022. Greenhouse gas emission and biogas potential from livestock in rural Indonesia. Jurnal Pendidikan IPA Indonesia, 11(1), 35 – 46
  8. Hossen, M., Khan, M., Azad, M., Hashem, M., Bhuiyan, M., Rahman, M. 2022. Effects of moisture content on the quality of vermicompost produced from cattle manure. Bangladesh Journal of Animal Science, 51(2), 40–46
  9. [IEA] International Energi Agency. 2023. CO2 emissions in 2022. IEA, France
  10. Ismawati, Y., Proboretno, N., Septiono, M.A., Zaki, K. 2022. Refuse Derived Fuel in Indonesia. Nexus3 Foundation/IPEN, Jakarta
  11. Lima, A., Victor, V.M. 2022. Physical properties of cattle dung. The Pharma Inovation Journal 11(1), 399-402
  12. Liu, N., Lim, S., Chung, J. 2019. A Study on the Characteristics of Cow Manure Drying and Combustion. International Journal of Research in Engineering and Science Vol 7
  13. Maj, I. 2022. Significance and Challenges of Poultry Litter and Cattle Manure as Sustainable Fuels: A Review. Energies Journal Vol. 15, 23
  14. Ministry of Agriculture of Indonesia. 2022. Outlook komoditas peternakan : daging sapi. Pusat Data dan Sistem Informasi Pertanian Sekretariat Jendral - Kementerian Pertanian, Jakarta
  15. Ning, J.Y., Zhu, X.D., Liu, H.G., Yu, G.H. 2021. Coupling thermophilic composting and vermicomposting processes to remove Cr from biogas residues and produce high value-added biofertilizers. Bioresources Technology, 329, 124869
  16. Noor, S., Golzar, J., Tajik, O. 2022. Simple random sampling. International Journal of Education and Language Studies, Vol 1(2)
  17. Quan, H., Zhu, T., Ma, F., Zhang, K., Zhu, Y., Wang, Y., Liu, Z. 2023. Enhanced bio-drying effect in low-temperature: Characteristics of sludge hyperthermophilic aerobic bio-drying by inoculating with thermophilic bacteria and full- scale operation. Drying Technology Journal Volume 41, 1977-1990
  18. Rachmawatie, D., Erwin, E., & Irawaty, K.N. 2024. Waste to energy sustainability model as a waste power plant : a bibliometric and visualization analysis. Jurnal Presipitasi : Media Komunikasi dan Pengembangan Teknik Lingkungan, vol. 21, no. 3, pp. 638-648
  19. Raganati, F., Procentese, A. 2022. Sp.ecial issue on “bioreactor system: design, modeling and continuous production process”. Processes MDPI 10, 1936
  20. Sadaka, S., Ahn, H. 2012. Evolution of a biodrying process for beef, swine, and poultry manure mixed separately with corn stover. Applied Engineering in Agriculture Vol. 28(3), 457-463
  21. Sugiyono. 2013. Metode penelitian kuantitatif, kualitatif, dan RnD. Penerbit Alfabeta, Bandung
  22. Szymajda, A., Laska, G. 2019. The effect of moisture and ash on the calorific value of Cow Dung biomass. Proceedings Journals, Vol. 16, 4
  23. Tom, A.P., Pawels, R., & Haridas, A. 2016. Biodrying process: A sustainable technology for treatment of municipal solid waste with high moisture content. Journal Waste Management, Vol. 49, 64-72
  24. Velis, C.A., Longhurst, P.J., Drew, G.H., Smith, R., Pollard, S.J.T. 2009. Biodrying for mechanical–biological treatment of wastes: A review of process science and engineering. Bioresource Technology Journal Volume 100, 2747-2761
  25. Xu, M., Sun, H., Yang, M., Xie, D., Sun, X., Meng, J., Wang, Q., Wu, C. 2022. Biodrying of biogas residue through a ther- mophilic bacterial agent inoculation: Insights into dewatering contribution and microbial mechanism. Bioresources Technology Volume 355, 127256
  26. Yang, B., Huang, T., Zhou, X., Zhao, Y., Liu, Q., Li, D., Pan, X. 2024. Moisture evaporation effect on pore structure and microbial distribution during sludge bio drying. Biochemical Engineering Journal Volume 202
  27. Yang, N., Ji, Y., Shao, Y., Shi, J., Tang, T., Liu, L. 2024. Thermophilic bacterial agent inoculation enhances bio drying of kitchen waste: Insights into process properties, organic degradation, bacterial communities and metabolic pathways. Journal Science of The Total Environment Vo. 951
  28. Zhang, J., Zhang, T., Ying, Y., Yao, X. 2021. Effects of different additives on the chemical composition and microbial diversity during composting of Camellia oleifera shell. Bioresour. Technol. 330, 124990
  29. Zhou, L., Yang, X., Wang, X., Feng, L., Wang, Z., Dai, J., Zhang, H., Xie, Y. 2023. Effects of bacterial inoculation on lignocellulose degradation and microbial properties during cow dung composting. Bioengineered Vol. 14, No. 1, 2185945

Last update:

No citation recorded.

Last update: 2025-12-14 02:15:29

No citation recorded.