skip to main content

SINTESIS BIOMATERIAL HYDROXYAPATITE DENGAN PROSES FLAME SPRAY PYROLYSIS DISERTAI PENAMBAHAN ADITIF ORGANIK

*Adhi Setiawan  -  Politeknik Perkapalan Negeri Surabaya / Shipbuilding Institute of Polytecnic Surabaya, Indonesia
W Widiyastuti  -  Jurusan Teknik Kimia, Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya
Sugeng Winardi  -  Jurusan Teknik Kimia, Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya
Agung Nugroho  -  Politeknik Perkapalan Negeri Surabaya (PPNS)
Received: 23 Aug 2016; Published: 1 Feb 2017.
Open Access Copyright (c) 2017 REAKTOR

Citation Format:
Abstract

SYNTHESIS OF HYDROXYAPATITE BIOMATERIALS BY FLAME SPRAY PYROLYSIS PROCESS WITH ADDITION OF ORGANIC ADDITIVES. Hydroxyapatite is  biomaterial which is widely used for biomedical aplication such as implant because  biocompatible, bioactivity, and strong affinity to biopolymers. Therefore parameters of morphology and crystallinity becomes an important parameter to be controlled. The addition of the organic additive on HAp precursor with ethylene glycol, polyethylene glycol 400, and urea is the alternative to improve the size, morphology, and crystallinity of HAp particles. The equipment for flame spray pyrolysis process includes ultrasonic nebulizer, flame reactor, and eletrostatic precipitator. The amount of organic additives used in experiment is  30%, 50%, and 100% by mass of the precursor. The result of SEM and XRD showed HAp synthesized by the addition of additive material has a smaller size than without using the additive and crystallinity is better than no additive. In addition HAp synthesized by the addition of 30% PEG additive have smallest average particle size about 114 nm, crystalite size about 16,6 nm and spherical morphology with a low agglomeration.

 

Keywords: Hidroxyapatite, organic additives, flame spray pyrolysis, morfology

 

 

Abstrak

 

Hydroxyapatite merupakan biomaterial yang seringkali diaplikasikan dalam biomedis sebagai bahan implant karena sifatnya yang biocompatible, bioactivity, dan memiliki afinitas yang kuat terhadap biopolimer. Oleh karena itu parameter morfologi serta kristalinitas partikel menjadi parameter penting untuk dikontrol. Penambahan aditif organik pada prekursor HAp dengan etilen glikol, polietilen glikol 400, serta urea merupakan alternativ agar memperbaiki ukuran, morfologi, serta meningkatkan kristalinitas partikel HAp. Peralatan utama flame spray pyrolysis meliputi ultrasonic nebulizer, reaktor flame, dan eletrostatik precipitator. Jumlah aditif organik yang digunakan pada eksperimen antara lain 30%, 50%, dan 100% massa prekursor. Hasil SEM dan XRD menunjukkan bahwa HAp yang disintesis dengan penambahan bahan aditif memiliki ukuran lebih kecil daripada tanpa menggunakan aditif dan tingkat kristalinitasnya lebih baik dibandingkan tanpa aditif. Selain itu HAp yang disintesis dengan penambahan aditif PEG sebanyak 30% memiliki ukuran rata-rata partikel yang terkecil yaitu sebesar 114 nm dengan ukuran kristal mencapai 16,6 nm serta memiliki morfologi bulat dengan tingkat aglomerasi yang rendah.

Fulltext View|Download
Keywords: Hydroxyapatite, aditif organik, flame spray pyrolysis, morfology
Funding: Sugeng Winardi and Widiyastuti, Lecturer of Sepuluh Nopember Institute of Technology, Departement of Chemical Engineering

Article Metrics:

  1. An, G.H., Wang H.J., Kim, B.H., Jeong, Y.G., and Choa, Y.H., (2007), Fabrication and Characterization of a Hydroxyapatite Nanopowder by Ultrasonic Spray Pyrolysis with Salt-Assisted Decomposition, J. Materials Science and Engineering A, 449-451, pp. 821-824
  2. Ataol, S., Tezcaner A.E., Duygulu, O., Keskin, D., and Machin, N.E., (2015), Synthesis and characterization of nanosized calcium phosphates by flame spray pyrolysis, and their effect on osteogenic differentiation of stem cells, J. of Nanoparticle Research, 17, pp. 95-108
  3. Brunner, T.J, Wick, P, Manser, P., (2006), In vitro cytotoxicityof oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility, J. of Environmental Science Technology, 40, pp. 4374–4381
  4. Cho, J.S. and Kang, Y.C., (2008), Nano-Sized Hydroxyapatite Powder Prepared by Flame Spray Pyrolysis, J. of Alloys and Compounds, 464, pp. 282-287
  5. Cho, J.S., Jung, D.S., Han, J.M., and Kang, Y.C., (2009), Nano-sized α and β-TCP powders prepared by high temperature flame spray pyrolysis, J. Material Science Engineering, C, 29, pp.1288–1292
  6. Cho, J.S., and Rhee, S.H., (2013), Formation mechanism of nano-sized hydroxyapatite powders through spray pyrolysis of a calcium phosphate solution containing polyethylene glycol, J. of the European Ceramic Society, 33, pp. 233–241
  7. Descamps, M., Hornez, J. C., and Leriche, A., (2008), Manufacture of Hydroxyapatite Beads for Medical Applications, J. of the European Ceramic Society, 29, pp. 369-375
  8. Fathi, M.H., Hanifi, A., Mortazavi, V., (2008), Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder, J of Materials Process Technology, 202, pp. 536–542
  9. Itatani, K., Abe, M., Umeda, T., Davies , I.J., and Koda, S., (2004), Morphological and Microstructural Change During The Heating of Spherical Calsium Orthophospate Agglomerates Prepared by Spray Pyrolysis, China Particuology, 2, pp. 200-206
  10. Kwon, S.K., (2006), Effect of Process Parameters of UV-Assisted Gas-Phase Cleaning on the Removal of PEG (Polyethylene glycol) from a Si Substrate, J. of the Korean Physical Society, 49, pp. 1421-1427
  11. Mohn, D., Doebelin, N., Tadier, S., Bernabei, R.E. , Luechinger, N.A., Stark, W.J., and Bohner, M., (2011), Reactivity of calcium phosphate nanoparticles prepared by flame spray synthesis as precursors for calcium phosphate cements, J. of Materials Chemistry, 21, pp. 13963-13972
  12. Okuyama, K. and Lenggoro, I.W., (2003), Preparation of nanoparticles via spray route. J. of Chemical Engineering Science, 58, pp. 537-547
  13. Paital, S. R., and Dahotre, N.B., (2009), Calcium Phosphate Coatings for Bioimplant Applications: Materials, Performance Factors and Methodologies, J. of Materials Science and Engineering: R: Reports, 66, pp. 1–70
  14. Pratsinis, S.E., (1998), Flame aerosol synthesis of ceramic powders, J. of Progress Energy and Combustion Science, 24, pp. 197–219
  15. Purwanto, A., Wang, W.N., Ogi, T., Lenggoro, I.W, Tanabe, E., and Okuyama, K., (2008), High luminance YAG:Ce nanoparticles fabricated from urea added aqueous precursor by flame process, J. of Alloys and Compounds, 463, pp. 350–357
  16. Rajan, R., and Pandit, A., (2001), Correlation to predict droplet size in ultrasonic atomization., J. of Ultrasonics, 39, pp. 235– 255
  17. Sadat, S.M., Khorasani, M.T., Dinpanah, K.E., Jamshidi, A., (2013), Synthesis methods for nanosized hydroxyapatite with diverse structures, Acta Biomaterialia, 9, pp. 7591–7621
  18. Schaber, P.M., Colson, J., Higgins, S., Thielen, D., Anspach, B., and Brauer, J., (2004), Thermal decomposition (pyrolysis) of urea in an open reaction vessel, J. of Thermochimica Acta, 424, pp. 131–142
  19. Setiawan, A., Widiyastuti, Winardi, S., dan Nugroho, A., (2014), Kinetika Reaksi Sintesis Biomaterial Hidroxyapatite Dengan Prekursor Nitrat dan Asetat, Jurnal Reaktor, 15(2), pp. 104-110
  20. ´Slósarczyk, A., Stobierska, E., Paszkiewicz, Z., and Gawlicki, M., (1996), Calcium phosphatematerials from precipitates with various calcium:phosphorus molar ratio. J. of American Ceramic Society, 79, pp. 2539–2544
  21. Stanley, S., (2014), Biological nanoparticles and their influence on organisms, J. of Current Opinion in Biotechnology, 28, pp. 69–74
  22. Suzuki, S., Fuzita, T., Maruyama, T., Takahashi, M., and Hikichi Y., (1993), Cation-Exchange Characteristics of Sintered Hydroxyapatite in the Strongly Acidic Region, J. of the American Ceramic Society, 76 (6), pp. 1638-1640
  23. Tofighi A, Palazzolo R (2005) Calcium phosphate bone cement preparation using mechano–chemical process, J. of Key Engineering Materials, 284–286, pp. 101–104
  24. Trommer, R.M., Bergmann, C.P., and Santos, L.A., (2009), Nanostructured Hydroxyapatited Powder Produced by a Flame-Based Techique. J. Material Science and Engineering C, 29, pp. 1770-1775
  25. Vidyasagar, C.C., and Naik, Y. A., (2016), Surfactant (PEG 400) effects on crystallinity of ZnO nanoparticles, Arabian J. of Chemistry, 9 , pp. 507 –510
  26. Wang, W.N., Kim, S.G., Lenggoro, I.W., and Okuyama, K., (2007), Polymer Assisted Annealing of Spray-Pyrolyzed Powders for Formation of Luminescent Particles with Submicrometer and Nanometer Sizes, J. of American Ceramic Society, 90, pp. 425-432
  27. Widiyastuti, W, Hidayat, D., Purwanto, A., Iskandar, F., Okuyama, K.., (2010), Particle dynamics simulation of nanoparticle formation in a flame reactor using a polydispersed submicron-sized solid precursor, J. of Chemical Engineering, 158, pp. 362-367
  28. Widiyastuti, W., Wang, W.N., Lenggoro, I.W., Iskandar, F., and Okuyama, K., (2007), Simulation and experimental study of spray pyrolysis of polydispersed droplets, J. of Materials Research, 22, pp.1888-1898
  29. Zhou, H., and Lee, J., (2011), Nanoscale hydroxyapatite particles for bone tissue engineering, Acta Biomater, 7, pp. 2769–2781

Last update:

No citation recorded.

Last update: 2025-01-21 11:36:06

No citation recorded.