BibTex Citation Data :
@article{Reaktor12320, author = {Lieke Riadi and Richard Wisanto and Arief Rachmat Herlambang and Sasmita Mirifica Vania and Andy Widyasayogo}, title = {A COMPARATIVE STUDY OF YARN DYED WASTEWATER USING FENTON’S REAGENT AND OZONATION : REMOVAL EFFICIENCY AND ECONOMIC ANALYSIS}, journal = {Reaktor}, volume = {16}, number = {4}, year = {2017}, keywords = {Fenton; ozonation; removal of COD, yarn dyed wastewater}, abstract = { This study makes a comparison between Fenton and Ozonation processes treatment methods to examine the removal of COD in yarn dyed wastewater with initial concentration of 525 ppm. Results indicated that the COD degradation efficiency was in order of Fenton > Ozone. In Fenton method, the ratio of Fe 2+ /H 2 O 2 used was 1 :10, the concentration of H 2 O 2 was 10.2 gram/L. In ozonation, the ozone concentration used in the study was 5.8 % mol, and the agitation was 400 rpm. The effect of operational parameters including, initial pH and time were studied in both processes. The results indicated that it was 86.2 % COD were removed, when the pH was about 3 using Fenton’s reagent and 83.06 % COD removal in ozonation for one hour experiment. To achieve the standard requirement for allowable parameters in wastewater to be discharged, there is only 15 minutes needed for Fenton process to remove COD by 84.8 %, while the ozonation needs 30 minutes for 81 %removal. Fenton process is more economic feasible compare to ozonation which is almost one-tenth of the operation cost for 1 liter of wastewater being process. Though both processes can demonstrate the high removal efficiency to achieve the allowable COD concentration in the wastewater to be discharged, Fenton process is favor to ozonation. }, issn = {2407-5973}, pages = {207--211} doi = {10.14710/reaktor.16.4.207-211}, url = {https://ejournal.undip.ac.id/index.php/reaktor/article/view/12320} }
Refworks Citation Data :
This study makes a comparison between Fenton and Ozonation processes treatment methods to examine the removal of COD in yarn dyed wastewater with initial concentration of 525 ppm. Results indicated that the COD degradation efficiency was in order of Fenton > Ozone. In Fenton method, the ratio of Fe2+/H2O2 used was 1 :10, the concentration of H2O2 was 10.2 gram/L. In ozonation, the ozone concentration used in the study was 5.8 % mol, and the agitation was 400 rpm. The effect of operational parameters including, initial pH and time were studied in both processes. The results indicated that it was 86.2 % COD were removed, when the pH was about 3 using Fenton’s reagent and 83.06 % COD removal in ozonation for one hour experiment. To achieve the standard requirement for allowable parameters in wastewater to be discharged, there is only 15 minutes needed for Fenton process to remove COD by 84.8 %, while the ozonation needs 30 minutes for 81 %removal. Fenton process is more economic feasible compare to ozonation which is almost one-tenth of the operation cost for 1 liter of wastewater being process. Though both processes can demonstrate the high removal efficiency to achieve the allowable COD concentration in the wastewater to be discharged, Fenton process is favor to ozonation.
Note: This article has supplementary file(s).
Article Metrics:
Last update:
Yarn dyed wastewater treatment using hybrid electrocoagulation-Fenton method in a continuous system: Technical and economical viewpoint
Last update: 2025-11-21 03:23:24
Reaktor provides immediate open access to its published articles under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. Authors retain copyright, without restrictions, merely granting the journal a non-exclusive license to publish their article and identify itself as its original publisher.
Whether as an author or a reader, you are free to download, adapt, share, upload to a social network or institutional repository, or redistribute articles for any other lawful purpose in any medium, provided you give appropriate credit to the original author(s) and Reaktor, link to the CC BY-SA license, indicate if changes were made, and redistribute any derivative work under the same license.
JURNAL REAKTOR (p-ISSN: 0852-0798; e-ISSN: 2407-5973)
Published by Departement of Chemical Engineering, Diponegoro University
View My Stats