skip to main content

Solid And Liquid Pineapple Waste Utilization For Lactic Acid Fermentation

*Abdullah Abdullah  -  , Indonesia
Open Access Copyright (c) 2017 REAKTOR

Citation Format:
Abstract

The liquid and solid pineapple waste contain mainly sucrose, glucose,fructose, and other nutrients. It therefore can potentially be used as carbon source for fermentation to produce organic acid. Recently, lactic acid has been considered to be an important raw material for production of biodegradable lactate polymer, the experiments were carried out in batch fermentation using the liquid and solid pineapple waste to produce lactic acid. The anaerobic fermentation of lactic acis were performed at 40 0C, ph 6, 5% inocolum, and 50 rpm. Initially results show that the liquid pineapple waste by using Lactobacillus delbrueckii can be used as carbon source for lactic acid fermentation. The production of lactic acid are found to be 79% yield, while only 56% yield was produced y using solid waste.

Keywords : Lactic acid fermentation, Pineapple waste, Lactobacillus delbrueckii

Fulltext View|Download
Keywords: Lactic acid fermentation, Pineapple waste, Lactobacillus delbrueckii

Article Metrics:

Last update:

  1. Sustainable utilization of pineapple wastes for production of bioenergy, biochemicals and value-added products: A review

    Prakash Kumar Sarangi, Thangjam Anand Singh, Ng Joykumar Singh, Krushna Prasad Shadangi, Rajesh K. Srivastava, Akhilesh K Singh, Anuj K. Chandel, Nidhi Pareek, Vivekanand Vivekanand. Bioresource Technology, 351 , 2022. doi: 10.1016/j.biortech.2022.127085
  2. Development and sensory evaluation of pineapple juice with peel

    Ananthi Deivasigamani, Chelladurai Vellaichamy, Chithra Ganesan. PROCEEDINGS OF THE 4TH NATIONAL CONFERENCE ON CURRENT AND EMERGING PROCESS TECHNOLOGIES E-CONCEPT-2021, 2387 , 2021. doi: 10.1063/5.0068574
  3. Functionalization of Wool Fabric Using Pineapple Peel Extract (PPE) as a Natural Dye

    Javed Sheikh, Ashutosh Agrawal, Harsh Garg, Aashi Agarwal, Prasun Mathur. AATCC Journal of Research, 6 (5), 2019. doi: 10.14504/ajr.6.5.3
  4. Comparison of Phenolic and Volatile Compounds in MD2 Pineapple Peel and Core

    Nur Nordin, Rabiha Sulaiman, Jamilah Bakar, Mohd Noranizan. Foods, 12 (11), 2023. doi: 10.3390/foods12112233
  5. Effects of Different Carbon Sources for High Level Lactic Acid Production by Lactobacillus casei

    Saber Salem Hassan, Roslinda Bt Abd Malek, Asliaty Atim, Suzi Salwah Jikan, Siti Fatimah Zaharah Mohd Fuzi. Applied Mechanics and Materials, 695 , 2014. doi: 10.4028/www.scientific.net/AMM.695.220
  6. Unleashing the potential of xanthan: a comprehensive exploration of biosynthesis, production, and diverse applications

    Ahmad Ramli Rashidi, Nur Izyan Wan Azelee, Dayang Norulfairuz Abang Zaidel, Lai Fatt Chuah, Awais Bokhari, Hesham Ali El Enshasy, Daniel Joe Dailin. Bioprocess and Biosystems Engineering, 46 (6), 2023. doi: 10.1007/s00449-023-02870-9
  7. Handbook of Pineapple Technology

    Eva Dorta, Dalbir S. Sogi. 2017. doi: 10.1002/9781118967355.ch11
  8. Dilute acid hydrolysis pretreatment for sugar and organic acid production from pineapple residues

    K K Ariffin, N Masngut, M N A Seman, S M Saufi, S Jamek, M S M Sueb. IOP Conference Series: Materials Science and Engineering, 991 (1), 2020. doi: 10.1088/1757-899X/991/1/012057
  9. Effect of pre-treatments on the saccharification of pineapple waste as a potential source for vinegar production

    Arianna Roda, Dante Marco De Faveri, Simone Giacosa, Roberta Dordoni, Milena Lambri. Journal of Cleaner Production, 112 , 2016. doi: 10.1016/j.jclepro.2015.07.019
  10. Valorization of pineapple waste for the extraction of bioactive compounds and glycosides using autohydrolysis

    Leonardo Sepúlveda, Aloia Romaní, Cristóbal Noé Aguilar, José Teixeira. Innovative Food Science & Emerging Technologies, 47 , 2018. doi: 10.1016/j.ifset.2018.01.012
  11. Advances in Vinegar Production

    Panagiotis Kandylis. 2019. doi: 10.1201/9781351208475-14

Last update: 2024-03-01 01:22:21

  1. Microwave-assisted alkali pretreatment for enhancing pineapple waste saccharification

    Conesa C.. BioResources, 11 (3), 2016. doi: 10.15376/biores.11.3.6518-6531
  2. Fourier transform infrared (FT-IR) spectroscopy as a possible rapid tool to evaluate abiotic stress effects on pineapple by-products

    Santos D.I.. Applied Sciences (Switzerland), 9 (19), 2019. doi: 10.3390/app9194141
  3. Effect of pre-treatments on the saccharification of pineapple waste as a potential source for vinegar production

    Roda A.. Journal of Cleaner Production, 112 , 2016. doi: 10.1016/j.jclepro.2015.07.019
  4. Dilute acid hydrolysis pretreatment for sugar and organic acid production from pineapple residues

    K K Ariffin, N Masngut, M N A Seman, S M Saufi, S Jamek, M S M Sueb. IOP Conference Series: Materials Science and Engineering, 991 (1), 2020. doi: 10.1088/1757-899X/991/1/012057
  5. Valorization of pineapple waste for the extraction of bioactive compounds and glycosides using autohydrolysis

    Leonardo Sepúlveda, Aloia Romaní, Cristóbal Noé Aguilar, José Teixeira. Innovative Food Science & Emerging Technologies, 47 , 2018. doi: 10.1016/j.ifset.2018.01.012
  6. Value added processing and utilization of pineapple by-products

    Dorta E.. Handbook of Pineapple Technology: Postharvest Science, Processing and Nutrition, 2016. doi: 10.1002/9781118967355.ch11