BibTex Citation Data :
@article{Reaktor24669, author = {Isdiriayani Nurdin and Pramujo Widiatmoko and Hary Devianto and Anastasia Yuandy and Rendy Rendy}, title = {Effect of Intermittent Spray Pyrolysis on the Characteristics of Fluorine-Doped Tin Oxide Conductive Glass for Dye Sensitized Solar Cell}, journal = {Reaktor}, volume = {19}, number = {4}, year = {2019}, keywords = {}, abstract = { One of dye sensitized solar cell’s (DSSC) component is conductive glass, a transparent glass substrate covered with semiconductor oxide, usually fluorine-doped tin oxide (FTO). An economic and scalable method used to deposit the FTO film is spray pyrolysis. A research conducted by Fukano et al. (2004) showed that introducing intermittence in spray pyrolysis using batch atomizer improves the glass’ characteristics. This research aims to observe the effect of intermittence on spray pyrolysis method using nebulizer. A compressor nebulizer and hotplate were used, where the glass’ surface temperature reached 300 o C. Transmittance, conductance, morphology and composition of the glasses produced were analyzed. Deposition time and intermittence were varied. Variation of time were 5; 7.5; 10; 16; and 39 minutes. Deposition time of 7.5 minutes showed the highest figure of merit (FOM) of 7.83×10 -3 Ω -1 . Intermittence was performed by turning the nebulizer off during deposition, with varying period and amount of intermittence. Periods of intermittence were varied for 10, 20, and 30 seconds, and amounts of intermittence were varied 1, 2, and 3 times. Variation of 3 intermittences at 20 seconds each resulted in the highest FOM of 19.29×10 -3 Ω -1 . DSSC’s efficiency built using produced conductive glass are 1.9 × 10 -4 % and 5.5 × 10 -4 %. }, issn = {2407-5973}, pages = {180--186} doi = {10.14710/reaktor.19.4.180-186}, url = {https://ejournal.undip.ac.id/index.php/reaktor/article/view/24669} }
Refworks Citation Data :
One of dye sensitized solar cell’s (DSSC) component is conductive glass, a transparent glass substrate covered with semiconductor oxide, usually fluorine-doped tin oxide (FTO). An economic and scalable method used to deposit the FTO film is spray pyrolysis. A research conducted by Fukano et al. (2004) showed that introducing intermittence in spray pyrolysis using batch atomizer improves the glass’ characteristics. This research aims to observe the effect of intermittence on spray pyrolysis method using nebulizer. A compressor nebulizer and hotplate were used, where the glass’ surface temperature reached 300oC. Transmittance, conductance, morphology and composition of the glasses produced were analyzed. Deposition time and intermittence were varied. Variation of time were 5; 7.5; 10; 16; and 39 minutes. Deposition time of 7.5 minutes showed the highest figure of merit (FOM) of 7.83×10-3 Ω-1. Intermittence was performed by turning the nebulizer off during deposition, with varying period and amount of intermittence. Periods of intermittence were varied for 10, 20, and 30 seconds, and amounts of intermittence were varied 1, 2, and 3 times. Variation of 3 intermittences at 20 seconds each resulted in the highest FOM of 19.29×10-3 Ω-1. DSSC’s efficiency built using produced conductive glass are 1.9×10-4 % and 5.5×10-4 %.
Article Metrics:
Last update:
Dye sensitized solar cell performance analysis through equivalent circuit model
Last update: 2025-01-22 10:39:20
In order for REAKTOR to publish and disseminate research articles, we need non-exclusive publishing rights (transferred from the author(s) to the publisher). This is determined by a publishing agreement between the Author(s) and REAKTOR. This agreement deals with transferring or licensing the publishing copyright to REAKTOR while Authors still retain significant rights to use and share their published articles. REAKTOR supports the need for authors to share, disseminate, and maximize the impact of their research and these rights in any databases.
As a journal author, you have the right to use your article for many purposes, including by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose, even commercially. Still, they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g., display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
JURNAL REAKTOR (p-ISSN: 0852-0798; e-ISSN: 2407-5973)
Published by Departement of Chemical Engineering, Diponegoro University