BibTex Citation Data :
@article{Reaktor25675, author = {Tutuk Djoko Kusworo and Bayu Pratama and Dhea Safira}, title = {Optimization of Bio-oil Production from Empty Palm Fruit Bunches by Pyrolysis using Response Surface Methodology}, journal = {Reaktor}, volume = {20}, number = {1}, year = {2020}, keywords = {}, abstract = { The need for fuel oil continues to increase in line with the increasing number of human populations and the growth rate of dependence on fuel oil. Bio-oil is a condensed-liquid mixture that results from the thermal derivation of biomass containing hemicellulose, lignin, and cellulose. This research developed an optimization of the operation condition of bio-oil from empty palm fruit bunches (OPEFB) using a modified pyrolysis reactor. The temperature and mass of empty palm fruit bunches were the two parameters considered in this study. Optimization was carried out on process parameters using the surface response methodology (RSM) and variance analysis (ANOVA). The significance of the different parameters and the effect of the relationship between parameters on the bio-oil yield is determined using a full factorial central composite design. The optimal operation condition of pyrolysis was found to be 570.71 oC, and the mass of empty palm fruit bunch 420.71 gr. Predictions from the optimum variable of operating conditions produce a bio-oil yield of 5.58%. The actual bio-oil yield on the optimum condition that was be validated is 5.6 %. The chemical composition of bio-oil obtained was evaluated by GCMS to ensure its characterization as a fuel. Keywords: Empty palm fruit bunches, Bio-oil, Pyrolysis, Response Surface Methodology, Optimization }, issn = {2407-5973}, pages = {1--9} doi = {10.14710/reaktor.20.1.1-9}, url = {https://ejournal.undip.ac.id/index.php/reaktor/article/view/25675} }
Refworks Citation Data :
The need for fuel oil continues to increase in line with the increasing number of human populations and the growth rate of dependence on fuel oil. Bio-oil is a condensed-liquid mixture that results from the thermal derivation of biomass containing hemicellulose, lignin, and cellulose. This research developed an optimization of the operation condition of bio-oil from empty palm fruit bunches (OPEFB) using a modified pyrolysis reactor. The temperature and mass of empty palm fruit bunches were the two parameters considered in this study. Optimization was carried out on process parameters using the surface response methodology (RSM) and variance analysis (ANOVA). The significance of the different parameters and the effect of the relationship between parameters on the bio-oil yield is determined using a full factorial central composite design. The optimal operation condition of pyrolysis was found to be 570.71 oC, and the mass of empty palm fruit bunch 420.71 gr. Predictions from the optimum variable of operating conditions produce a bio-oil yield of 5.58%. The actual bio-oil yield on the optimum condition that was be validated is 5.6 %. The chemical composition of bio-oil obtained was evaluated by GCMS to ensure its characterization as a fuel.
Keywords: Empty palm fruit bunches, Bio-oil, Pyrolysis, Response Surface Methodology, Optimization
Note: This article has supplementary file(s).
Article Metrics:
Last update:
A Review of an Artificial Intelligence Framework for Identifying the Most Effective Palm Oil Prediction
Last update: 2025-11-26 16:45:48
Reaktor provides immediate open access to its published articles under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. Authors retain copyright, without restrictions, merely granting the journal a non-exclusive license to publish their article and identify itself as its original publisher.
Whether as an author or a reader, you are free to download, adapt, share, upload to a social network or institutional repository, or redistribute articles for any other lawful purpose in any medium, provided you give appropriate credit to the original author(s) and Reaktor, link to the CC BY-SA license, indicate if changes were made, and redistribute any derivative work under the same license.
JURNAL REAKTOR (p-ISSN: 0852-0798; e-ISSN: 2407-5973)
Published by Departement of Chemical Engineering, Diponegoro University
View My Stats