BibTex Citation Data :
@article{Reaktor73225, author = {I. Istadi and Teguh Riyanto and Astrid Eka Permatasari and Daniella Cipta Dinara}, title = {Effect of Ni-Co Ratio on ZSM-5 Catalyst Performance in Palm Oil Hydrocracking for Biofuel Production}, journal = {Reaktor}, volume = {0}, number = {0}, year = {2025}, keywords = {}, abstract = { Biofuel derived from vegetable oil can be utilized as a vehicle fuel with various advantages, such as renewability, environmental friendliness, and sustainable availability. One of the methods for converting vegetable oil into biofuel is hydrocracking. This study investigates Ni-Co/ZSM-5 catalyst with Ni-Co metal ratios of 1:0.5, 1:1, and 1:1.5 to examine their effects on the catalyst characteristics and performance in the hydrocracking process of palm oil into biofuel. The catalyst synthesis was carried out using the co-impregnation method with ultrasound assistance, followed by characterization using XRD and XRF. The hydrocracking process was conducted at a temperature of 450℃ and a WHSV of 0.1 min -1 , while the gas product was analyzed using GC and liquid product was distilled. XRF results showed that the actual Ni-Co ratio did not significantly differ from the designed ratio. XRD analysis indicated crystal agglomeration at a 1:1.5 ratio due to competition between Ni and Co metal particles diffusing into the zeolite pores, as well as the presence of dislocations and crystal defects. Differences in catalyst characteristics resulted in variations in yield, selectivity, and gas distribution in the hydrocracking process. The catalyst with a Ni-Co ratio of 1:1.5 exhibited the highest liquid product yield and biogasoline selectivity but also produced a higher concentration of CO, CO 2 , and C2 gases. It is associated with the breakdown of triglycerides into fatty acids, which subsequently fragment into shorter-chain biofuel components. }, issn = {2407-5973}, doi = {10.14710/reaktor.0.0.%p}, url = {https://ejournal.undip.ac.id/index.php/reaktor/article/view/73225} }
Refworks Citation Data :
Biofuel derived from vegetable oil can be utilized as a vehicle fuel with various advantages, such as renewability, environmental friendliness, and sustainable availability. One of the methods for converting vegetable oil into biofuel is hydrocracking. This study investigates Ni-Co/ZSM-5 catalyst with Ni-Co metal ratios of 1:0.5, 1:1, and 1:1.5 to examine their effects on the catalyst characteristics and performance in the hydrocracking process of palm oil into biofuel. The catalyst synthesis was carried out using the co-impregnation method with ultrasound assistance, followed by characterization using XRD and XRF. The hydrocracking process was conducted at a temperature of 450℃ and a WHSV of 0.1 min-1, while the gas product was analyzed using GC and liquid product was distilled. XRF results showed that the actual Ni-Co ratio did not significantly differ from the designed ratio. XRD analysis indicated crystal agglomeration at a 1:1.5 ratio due to competition between Ni and Co metal particles diffusing into the zeolite pores, as well as the presence of dislocations and crystal defects. Differences in catalyst characteristics resulted in variations in yield, selectivity, and gas distribution in the hydrocracking process. The catalyst with a Ni-Co ratio of 1:1.5 exhibited the highest liquid product yield and biogasoline selectivity but also produced a higher concentration of CO, CO2, and C2 gases. It is associated with the breakdown of triglycerides into fatty acids, which subsequently fragment into shorter-chain biofuel components.
Article Metrics:
Last update:
Last update: 2025-06-16 09:54:16
In order for REAKTOR to publish and disseminate research articles, we need non-exclusive publishing rights (transferred from the author(s) to the publisher). This is determined by a publishing agreement between the Author(s) and REAKTOR. This agreement deals with transferring or licensing the publishing copyright to REAKTOR while the Authors still retain significant rights to use and share their published articles. REAKTOR supports the need for authors to share, disseminate, and maximize the impact of their research and these rights in any databases.
As a journal author, you can use your article for many purposes, including by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in REAKTOR journals have wide rights to use their works for teaching and scholarly purposes without needing to seek consent, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose, even commercially. Still, they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g., display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
JURNAL REAKTOR (p-ISSN: 0852-0798; e-ISSN: 2407-5973)
Published by Departement of Chemical Engineering, Diponegoro University
View My Stats