PENGARUH CO-PRECIPITATION BESI KLORIDA TERHADAP KINERJA LUMPUR AKTIF PADA PROSES PENGOLAHAN AIR LIMBAH DOMESTIK SINTETIK

Dian Fatikha Aristiami -  Magister Teknik Kimia Universitas Diponegoro Balai Pengujian Mutu Produk Tanaman, Direktorat Perlindungan Tanaman Pangan Jl. AUP Pasar Minggu, Jakarta Selatan 12520, Indonesia
*I Nyoman Widiasa -  Jurusan Teknik Kimia Fakultas Teknik UNDIP Jl. Prof. Soedarto, SH, Tembalang – Semarang; Telp. (024)7460058; fax. (024)76480675, Indonesia
Received: 29 Aug 2015; Published: 12 Oct 2015.
Open Access
Citation Format:
Article Info
Section: Research Article
Language: EN
Full Text:
Statistics: 1034 1340
Abstract

The increase of population leads to an increase of the quantity of domestic wastewater. Activated sludge system is the most cost-efective to treat the domestic wastewater treatment. This study is aimed to evaluate the co-precipitation coagulant effect of FeCl3 on the growth of activated sludge, settling characteristics of the activated sludge, and effluent quality. sludge sedimentation characteristics (settling) as well as on the effluent quality. The activated sludge systems were operated in batch mode and synthetic domestic wastewaters with C:N:P ratio of 100:5:1 were used as feed wastewater. The growth of activated sludge was based on concentration of Mixed Liquor Suspended Solid (MLSS), settling characteristics of activated sludge was based on value of Sludge Volume Index (SVI), and effluent quality was based on turbidity, colour, N-ammonia concentration, and Chemical Oxygen Demand content. Results indicate that inhibition effect of FeCl3 to activated sludge activity was not significant at dosage ≤ 30 mg/L. Good settling characterisic (SVI 70-150 mg/L) was achieved at dosage of 20-30 mg/L. Finally, the best effluent quality, i.e. turbidity (9.4), colour (96), amonia removal (83.6%), and COD removal (72.97%), at dosage of 30 mg/L.

Keywords: activated sludge; co-precipitation; domestic wastewater; wastewater treatment

Abstrak

Peningkatan jumlah penduduk mengakibatkan kenaikan jumlah air limbah domestik. Sistem lumpur aktif merupakan proses yang paling efektif untuk mengolah air limbah domestik. Penelitian ini bertujuan untuk mengevaluasi pengaruh co-precipitation koagulan FeCl3 terhadap pertumbuhan lumpur aktif, karakteristik pengendapan lumpur aktif, dan kualitas efluen. Sistem lumpur aktif dioperasikan secara curah dan umpan air limbah yang digunakan adalah air limbah domestik sintesis dengan rasio C:N:P = 100:5:1. Pertumbuhan lumpur aktif  berdasarkan konsentrasi Mixed Liquor Suspended Solid (MLSS), karakteristik pengendapan lumpur berdasarkan  nilai Sludge Volume Index (SVI), dan kualitas efluen berdasarkan tingkat kekeruhan, warna, kadar N-amonia dan kadar Chemical Oxygen Demand (COD). Hasil penelitian menunjukkan bahwa inhibisi FeCl3 terhadap aktivitas lumpur aktif tidak signifikan pada dosis ≤ 30 mg/L. Karakteristik pengendapan yang baik (SVI 70-150 mg/L) tercapai pada dosis 20-30 mg/L. Kualitas efluen terbaik, yaitu  kekeruhan (9,4),  warna (96), penyisihan amonia (83,6%) dan penyisihan COD (72,97%), pada dosis 30 mg/L.

Kata kunci: lumpur aktif; co-precipitation; air limbah domestik; pengolahan air limbah

 

Keywords
activated sludge; co-precipitation; domestic wastewater; wastewater treatment

Article Metrics:

  1. Agridiotis, V., Forster, C.F., and Carliell-Marquet, (2007), Addition of Al and Fe salts during treatment of paper mill effluents to improve activated sludge settlement characteristics, Bioresource Technology, 98, 2926-2934
  2. Amanatidou, E., Samiotis, G., Trikoilidou, E., Pekridis, G., and Taousanidis, N., (2015), Evaluating sedimentation problems in activated sludge treatment plants operating at complete sludge retention time, Water Research, 69, 20-29.
  3. APHA, (1992), Standard Methods for the Examination of Water and Wastewater, APHA, Washington DC.
  4. ASTM International, D 1209-00 : Standard Test Method for Color of Clear Liquids (Platinum Cobalt Scale).
  5. Bitton, G., (1994), Wastewater Microbiology. A John Wiley & Sons, Inc., Publication.
  6. Caravelli, A.H., Contrerasa, E.M., and Zaritzky, N.E. (2010). Phosphorous removal in batch systems using ferric chloride in the presence of activated sludges. Journal of Hazardous Materials, 177, 199–208
  7. Caravelli, A.H., Gregorio, C.D., and Zaritzky, N.E., (2012), Effect of operating conditions on the chemical phosphorus removal using ferric chloride by evaluating orthophosphate precipitation and sedimentation of formed precipitates in batch and continuous systems, Chemical Engineering Journal, 209, 469-477.
  8. Chen, Y., (2013), The Effect on Activated Sludge of Chemical Coagulants Applied in Synchronization Dephosphorization, Journal of Environmental Protection, 4, 1423-1427.
  9. Clark, T. and Stephenson, T., (1998), Effects of Chemical Addition on Aerobic Biological Treatment of Municipal Wastewater, Environmental Technology, 19(6), 579-590
  10. Clark,T, Burgess, J.E., Stephenson, T., and Smith, A.K.A., (2000), The Influence of Iron-Based Co-Precipitants On Activated Sludge Biomass, Trans IChemE, 78, Part B.
  11. Dwipayana dan Ariesyady, H.D., (2009), Identifikasi Keberagaman Bakteri Pada Lumpur Hasil Pengolahan Limbah Cat Dengan Teknik Konvensional, Program Studi Teknik Lingkungan Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung
  12. Eckenfelder, Jr. and Wesley, W., (2000), Industrial Water Pollution Control 3th ed. Singapore: Mc Graw Hill Book Co. EPA, (1993a), Method 180.1 Determination of Turbidity by Nephelometry Revision 2, US Enviromental Protection Agency, Cincinnati, Ohio. EPA, (1993b), Method 410.4. The Determination of Chemical Oxygen Demand by Semi Automated Colorimetry, US Enviromental Protection Agency, Cincinnati, Ohio. Gregorio, C.D., Caravelli, A.H., and Zaritzky, N.E., (2010), Performance and biological indicators of a laboratory-scale activated sludge reactor with phosphate simultaneous precipitation as affected by ferric chloride addition, Chemical Engineering Journal, 165, p. 607-616. Herlambang, A. dan Wahjono, H.D., (1999), Teknologi Pengolahan Limbah Tekstil Dengan Lumpur Aktif, Kelompok Teknologi Pengelolaan Air Bersih dan Limbah Cair, Direktorat Teknologi Lingkungan. Kedeputian Bidang Informatika, Energi dan Material, Badan Pengkajian dan Penerapan Teknologi Jiuyi, Li, (2005), Effects of Fe(III) on floc characteristics of activated sludge, J Chem Technol Biotechnol, 80, 313-319. Keputusan Menteri Negara Lingkungan Hidup Nomor 112 Tahun 2003 tentang Baku Mutu Air Limbah Domestik. Klein, P.H., (2005), Microbiology, Sixth Edition. McGraw Hill International Editions, Singapore.
  13. Lees, E.J., Noble, B., Hewitt, R., and Parson, S.A., (2001a), The Impact of Residual Coagulant on Downstream Treatment Process, Enviromental Technology, 22, 113-122. Lees, E.J. Noble, B., Hewitt, R., and Parson, S.A. (2001b), The Impact of Residual Coagulant on The Respiration Rate and Sludge Caracteristics of An Activated Microbial Biomass, Trans. IChemE, Vol 79, Part B. Liu, Y., Shi, H., Wenlin, Li, Hou,Y., and Miao, He, (2011), Inhibition of chemical dose in biological phosphorus and nitrogen removal in simultaneous chemical precipitation for phosphorus removal, Bioresource Technology, 102, 4008–4012 Metcalf and Eddy, (1991), Wastewater Engineering Threatment Disposal Reuse, New York : McGraw Hill International Editions.
  14. Oikonomidis, I., Burrowsb, L.J., Cynthia M., and Carliell-Marquet, (2010), Mode of action of ferric and ferrous iron salts in activated sludge, www.interscience.wiley.com, DOI 10.1002/jctb.2399
  15. Philips, S., Rabaey, K., and Verstraete, W., (2003), Impact of iron salts on activated sludge and interaction with nitrite or nitrate, Bioresource Technology, 88, 229-239. Sürücü, G. and Çetin, F.D. (1990). Effect of Temperature, pH and DO Concentration on Settleability of Activated Sludge, Environmental Technology, 11, 205-212
  16. Wilen, B.M., Keiding, K., and Nielsen, P.H., (2004), Flocculation of activated sludge flocs by stimulation of the aerobic biological activity, Water Research, 38, 3909-3919.