*Nur Rokhati  -  Fakultas Teknik, Universitas Diponegoro, Indonesia
Bambang Pramudono  -  Fakultas Teknik, Universitas Diponegoro., Indonesia
Titik Istirokhatun  -  Fakultas Teknik, Universitas Diponegoro, Indonesia
Mohammad Sulchan  -  Fakultas Kedokteran Universitas Diponegoro, Indonesia
Dyah Ayu Kresnianingrum  -  Fakultas Teknik, Universitas Diponegoro, Indonesia
Luthfi Kurnia Dewi  -  Fakultas Teknik, Universitas Diponegoro, Indonesia
Received: 15 Oct 2015; Published: 27 Feb 2016.
Open Access

Citation Format:
Article Info
Section: Research Article
Language: IND
Statistics: 1359 2082


CHITOSAN ENZYMATIC HYDROLYSIS USING A COMBINATION OF ENDO-GLUCANASE AND CELLOBIOHYDROLASE. Chitosan is very promising in various fields including medicine, pharmacology, and the food industry. However, the application of this polysaccharide is limited by its high molecular weight resulting in its low solubility in aqueous media. In this respect, the chitosan with shorter chain length, display a reduced viscosity and are soluble in aqueous media at pH values close to neutrality. The aim of this study is the hydrolysis of chitosan to obtain a low molecular weight chitosan using enzymes endo-glucanase and cellobiohydrolase. The hydrolysis of chitosan was carried out under a temperature of 40° C and pH 5. Chitosan degradation was monitored by the analysis of reducing sugars and viscosity, whereas the chemical characterization of chitosan is done by using test FTIR (infrared spectroscopy). The results showed that enzyme treatment resulted in a substantial loss in viscosity of the chitosan solution shows depolymerization. Depolymerization using endo-glucanase took place very quickly during the initial 15 minutes. The rate of viscosity decrease on chitosan degradation using cellobiohydrolase is lower than using endo-glucanase. When the reaction time was 4 h, the lowest  viscosity is showed by cellobiohydrolase, and the highest solubility is showed by combination of endo-glucanase and cellobiohydrolase.

Keywords: endo-glucanase; cellobiohydrolase; chitosan; hydrolysis


Kitosan dapat dimanfaatkan di berbagai bidang seperti kedokteran, farmasi dan industri makanan. Aplikasi kitosan sering dibatasi oleh berat molekul kitosan yang tinggi sehingga viskositasnya tinggi dan kelarutannya rendah. Kitosan dengan rantai polimer pendek, akan mempunyai viskositas rendah, dan mudah larut pada larutan/air dengan pH mendekati netral. Penelitian ini bertujuan untuk menghidrolisis kitosan secara enzimatis menggunakan enzim endo-glucanase dan cellobiohydrolase. Hidrolisis kitosan dilakukan pada suhu 40 °C dan pH 5. Degradasi kitosan dipantau melalui analisa gula reduksi dan viskositas, sedangkan karakterisasi kimia kitosan dilakukan dengan menggunakan uji FTIR (infra red spectroscopy). Hasil penelitian menunjukkan bahwa hidrolisis enzimatis kitosan dapat menyebabkan terjadinya penurunan berat molekul yang ditandai dengan adanya penurunan viscositas larutan kitosan. Pada 15 menit awal hidrolisis terjadi penurunan viskositas yang sangat besar. Laju penurunan viskositas enzim cellobiohydrolase lebih rendah dibanding dengan enzime endo-glucanase. Setelah waktu reaksi 4 jam, viskositas terendah diperoleh pada enzime cellobiohydrolase, sedangkan kelarutan tertinggi diperoleh pada kombinasi enzime endo-glucanase dan cellobiohydrolase.

Kata kunci: endo-glucanase; cellobiohydrolase; kitosan; hidrolisis


Keywords: Hidrolisis chitosan, Cellulase, Cellobiohydrolase

Article Metrics:

  1. Abd-Elmohdy, F.A., El-Sayed, Z., Essam, S., and Hebeish, A., 2010, Controlling chitosan molecular weight via bio-chitosanolysis, Carbohydrate Polymers, 82(3), 539–542.
  2. Andersen, N., 2007, Enzymatic Hydrolysis of Cellulose, Bio Centrum, Technical University of Denmark.
  3. Honarkar, H. and Barikani, M., 2009, Applications of biopolymers I: chitosan, Published online: Springer-Verlag.
  4. Horn, S.J. and Eijsink, V.G.H., 2003, A reliable reducing sugar end assay for chito-oligosaccharides, Carbohydrate Polymers, 56, 35-39.
  5. Huang, Y.C., Li, L., Guo, S.Y., and Cai, M.Y., 2003, Characteristics of Chitosan Degradation by Papain. Journal of South China University of Technology (Nature Science), 31, 71–75
  6. Kyriacou A., Neufeld R.J., and Mackenzie C.R., 1989, Reversibility and competition in the adsorption of Trichoderma-Ressei cellulase components, Biotechnol, 33, 631-637.
  7. Lee, D.X., Xia, W.S., and Zhang, J.L., 2008, Enzymatic preparation of chitooligosaccharides by commercial lipase, Food Chemistry, 111(2), 291–295.
  8. Li, J., Du, Y., Yang, J., Feng, T., Li, A., and Chen, P., 2005, Preparation and characterisation of low molecular weight chitosan and chitooligomers by a commercial enzyme, Polymer Degradation and Stability, 87, 3, 441-448.
  9. Li, J., Du, Y., and Liang, H., 2007, Influence of molecular parameters on the degradation of chitosan by a commercial enzyme, Polymer Degradation and Stability, 92, 515-524.
  10. Lin, Q., and Ma, K.L., 2003, Study of Catalytic Hydrolysis of Chitosan by Cellulase, China Surfactant Detergent and Cosmetics, 33, 22–25.
  11. Lin, H., Wang, H., Xue, C., and Ye, M., 2002. Preparation of chitosan oligomers by immobilized papain. Enzyme and Microbial Technology, 31, 5, 588–592.
  12. Lin, S., Lin, Y.C., and Chen, H., 2009, Low molecular weight chitosan prepared with the aid of cellulase, lysozyme and chitinase: Characterisation and antibacterial activity, Food Chemistry, 116, 47–53.
  13. Liu, Y.J., Jiang, Y., Feng, Y.F., and Han, D., 2005, Study on The Chitosan Hydrolysis Catalyzed by Special Cellulase and Preparation of Chitooligosaccharide, Journal of Functional Polymers, 18, 325–329.
  14. Lynd, L.R., Weimer, P.J., Zyl, W.H.V., and Pretorius, I.S. 2002, Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiol. Mol. Biol. 66.
  15. Majeti, N.V. and Kumar, R., 2000, A review of chitin and chitosan applications, Reactive & Functional Polymers, 46, 1-27
  16. Maggy, T.S., 2006, Pemanfaatan kitosan, Foodreview Indonesia.
  17. Rokhati, N., Widjajanti, P., Pramudono, B., and Susanto, H., 2013, Performance Comparison of α- and β-Amylases on Chitosan Hydrolysis, ISRN Chemical Engineering, Article ID 186159, 5 pages
  18. Roncal, T., Oviedo, A., Armentia, I.L., Fernande, L., and Villaran, M.C., 2007, High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan. Carbohydrate Research, 342, 2750–2756.
  19. Sardar, M., Roy, I., Gupta, M.N., 2003, A smart bioconjugate of alginate and pectinase with unusual biological activity toward chitosan, Biotechnol. Prog, 19, 1654–1658.
  20. Shahidi, F. and Abuzaytoun, R., 2005, Chitin, Chitosan, And Co-Products: Chemistry, Production, Applications, And Health Effects, Advances In Food And Nutrition Research, 49.
  21. Stuart, B.H., 2004, Infrared Spectroscopy: Fundamentals and Applications, John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chicheter, West Sussex PO19 8SQ, England.
  22. Tsao, C.T., Chang, C.H., Lin, Y.Y., Wu, M.F., Han, J.L., and Hsieh, K.H., 2011, Kinetic study of acid depolymerization of chitosan and effects of low molecular weight chitosan on erythrocyte rouleaux formation, Carbohydrate research, 346, 1, 94–102.