skip to main content

MODIFIED STARCH OF AMORPHOPHALLUSCAMPANULATUS AS A NOVEL ADSORBENT FOR WATERADSORPTION

*Ajeng Yulianti Dwi Lestari  -  Department of Chemical Engineering, Faculty of Enginnering, Diponegoro University, Jl. Prof. Soedharto,Tembalang, Semarang 50239, Central Java,, Indonesia
Mohamad Djaeni  -  Department of Chemical Engineering, Faculty of Enginnering, Diponegoro University, Jl. Prof. Soedharto,Tembalang, Semarang 50239, Central Java,, Indonesia
Ahmad M Fuadi  -  Department of Chemical Engineering, Faculty of Engineering, Muhammadiyah University of Surakarta, AhmadYani Pos Tromol 1, Pabelan, Kartasura, Sukoharjo, Central Java, Indonesia
Received: 20 Jan 2016; Published: 15 May 2016.

Citation Format:
Abstract

A novel adsorbent manufactured from Amorphophallus campanulatus (Porang or Suweg or Elephant Foot Yam or Foot Yam) starch and employed to adsorb water from wet air. The experiment focused on the adding of sodium hydroxide in various concentration of sodium hydroxide (10:1, 10:2.5, 10:5 10:10, 10:20, 10:30, 10:40 mmol/mmol) and its effect to form the new adsorbents shape and chemical bonds. Experimental data were also fitted with several models of isotherm adsorption and adsorption kinetics.Analysis with FTIR and SEM showed that sampel C7 (modified starch with NaOH 40:10 mol) is the adsorbent that could adsorp more water from air and also proofed that foot yam starch can be feasible to be synthesize as an adsorbent for water adsorption.The results also showed that this novel adsorbent fitted with pseudo second order kinetic model and Freundlich isotherm model with maximum adsorption capacity calculated 2.006 g water/g adsorbent.

 

Keywords: elephant foot yam; starch; sodium hydroxide; water adsorption

Abstrak

PATI UMBI AMORPHOPHALLUS CAMPANULATUS TERMODIFIKASI SEBAGAI ADSORBEN BARU UNTUK ADSORPSI AIR.Adsorben baru berhasil dibentuk dari pati umbi Amorphophallus campanulatus (Porang atau Suweg) yang kemudian digunakan untuk mengadsorp air dari udara lembab. Penelitian berfokus kepada pengaruh penambahan variasi konsentrasi dari natrium hidroksida (NaOH) (10:1, 10:2,5, 10:5, 10:10, 10:20, 10:30, 10:40 mmol pati/mmol NaOH) atas pembentukan morfologi serta ikatan kimia dari adsorben baru. Data eksperimen kemudian dicocokkan dengan beberapa model isoterm serta kinetika adsorpsi. Analisis dengan menggunakan FTIR dan SEM menunjukkan bahwa sampel C7 (perbandingan pati modifikasi dengan NaOH 40:10 mol) adalah adsorben yang dapat menjerab air lebih banyak dibandingkan dengan adsorben yang lainnya. Hal ini menunjukkan bahwa adsorben dapat menjerab air dari udara lembab dan membuktikan bahwa umbi porang ini layak untuk dijadikan sebuah sumber adsorben alami yang baru. Hasil juga menunjukkan bahwa data eksperimen menunjukkan kesesuaian dengan model kinetika semu orde dua dan model isoterm Freundlich dengan kapasitas adsorpsi maksimal 2,006 g air/g adsorben

Kata kunci: umbi Suweg; pati; NaOH; adsorpsi air


Fulltext View|Download
Keywords: elephant foot yam; starch; sodium hydroxide; water adsorption
Funding: BPKLN’s fast track scholarship by Ministry of Education and Culture of Indonesia

Article Metrics:

  1. Al Asheh, S., Banat, F., Al Lagtah, N. (2004). Separation of ethanol water mixtures using molecular sieves and biobased adsorbents. Chemical Engineering Research and Design, 82, 855-864
  2. Boonfung, C., Rattanaphanee, P. (2010). Cassava-based Adsorbent for Ethanol Dehydration.The Journal of KMUTNB, 20, 196–203
  3. Chua, M., Chan, K., Hocking, TJ., Williams, PA., Perry, CJ., Baldwin, TC. (2012). Methodologies for the extraction and anaysis of konjac glucomannan from corms of Amorphophallus konjac K. Koch. Carbohydrate Polymers, 87: 2202-2210
  4. Dada, AO., Olalekan, AP., Olatunya, AM., Dada, O. (2012). Langmuir, Freundlich, Temkin and Dubinin Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry, 3: 38-45
  5. Delgado, JA., Agueda, VI., Uguina, MA., Sotelo, JI., Garcia, A., Brea, P., Garcia Sanz, A. (2013). Separation of ethanol water liquid mixtures by adsorption on a polymeric resin Sepabeads 207. Chemical Engineering Journal, 220: 89-97
  6. Duanmu, J., Gamstedt, EK., Rosling, A. (2007). Synthesis and preparation of crosslinked allyglycidyl ether modified starch wood fibre composites. Starch, 29:523-532
  7. Foo, KY., Hameed, BH. (2010). Insights into the modelling of adsorption isotherm systems. Review Chemical Engineering Journal, 156: 2-10
  8. Golberg, S. (2005). Equations and models describing adsorption processe in soils. Soil Science Society of America, 667 S. Segoe Road, Madison, WI 53711, USA. Chemical Processes in Soil. SSSA Book Series no 8
  9. Gunay, A., Arslankaya, E., Tosun, I. (2007). Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equlibrium and kinetics. Journal of Hazardous Materials, 146: 362-371
  10. Hanafiah, MAK., Ibrahim, SC., Yahya, MZA. (2006). Equilibrium adsorption study of lead ions onto sodium hydroxide modifies Lalang (Imperata cylindrica) leaf powder. Journal of Applied Science, 6: 2762-2767
  11. Harmayani, E., Aprilia, V., Marsono, Y. (2014). Characterization of glucomannan from Amorphophallus campanulatus and its prebiotic activity in vivo. Carbohydrate Polymers, 112, 475–479
  12. Ho, YS., McKay. (1999). Pseudo second order model for sorption process. Process Biochemistry, 34: 451-465
  13. Hoover, R. (2001). Compotition, molecular structure and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymers, 45: 253:267
  14. Hunger, B., Klepel, O., Kirschhock, C., Heuchel, M., Toufar, H., Fuess, H. (1999). Interaction of water with alkali metal cation exchanged X type zeolites: a temperature programmed desorption and x ray diffraction study. Langmuir, 18: 5937-5941
  15. Kaur, B., Ariffin, F., Bhan, R., Karim, AA. (2012). Progress in starch modification in the last decade. Food Hydrocolloids, 26, 398-404
  16. Khalili, N., Vyas, J., Weangkaew, W., Westfall, S., Parulekar, S., Sherwood, R. (2002). Synthesis and characterization of activated carbon and bioactive adsorbent produced from paper mill sludge. Separation and Purification Technology, 26(2-3), 295–304
  17. Knaebel, K.S. (2009). Adsorbent Selection. Adsorption Research Inc’s publication, 1-21
  18. Knez, Z., Noval, Z. (2001). Adsorption of water vapor silica, alumina and their mixed oxide aerogels. Journal of Chemical and Engineering Data, 46: 858-860
  19. Kumar, U., Bandyopadhyay, M. (2006). Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresources Technology, 97: 104-109
  20. Lawal, OS., Lechner, MD., Kulicke, WM. (2008). The synthesis conditions, characterizations and thermal degradation studies of an etherified starch from an unconventional source. Polymer Degradation and Stability, 93: 1520-1528
  21. Liu, X, Zhang, L. (2015). Removal of phosphate anions using the modified chitosan beads: adsorption kinetic, isotherm and mechanism studies. Powder Technology
  22. Memon, SQ., Memon, N., Shah, SW., Khuhawar, MY., Bhanger, ML. (2007). Sawdust, a green and economical sorbent for the removal of cadmium (II) ions. Journal of Hazardous Materials, 139: 116-121
  23. Mohan, S., Karthikeyan, J. (1997). Removal of lignin and tannin color from aqueous solution bt adsorption on to activated carbon solution by adsorption charcoal. Environmental Pollution, 97: 183-187
  24. Ng, EP., Mintova, S. (2008). Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous and Mesoporous Materials, 114: 1-26
  25. Ng, EP., Ng, DTL., Awala, H., Wong, KL., Mintova, S. (2014). Microwave synthesis of colloidal stable AIPO 5 nanocrystals with high water adsorption capacity and unique morphology. Materials Letters, 132: 126-129
  26. Niu, X., Zheng, L., Zhou, J., Dang, Z., Li, Z. (2014). Synthesis of an adsorbent from sugarcane bagass by graft copolymerization and its utilization to remove Cd (II) ions from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 45, 2557–2564
  27. O’Connell, D.W., Birkinshaw, C., O’Dwyer, T.F. (2008). Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresource Technology, 99, 6709–6724
  28. Ogungbenle, H. N. (2007). Effect of chemical modification on starch of some legume flours. Pakistan Journal of Nutrition, 6, 167–171
  29. Okewale, AO., Babayemi, KA., Olalekan, AP. (2013). Adsorption isotherms and kinetics model of starchy adsorbents on uptake of water from ethanol-water systems. International Journal of Applied Science and Technology, 3: 35-42
  30. Pacheco, EP., Huchin, VMM., Leon, RJE., Fernandez, AO., Hernandez, LHM., Soberanis, CRR, Ancona, DB. (2014). Isolation and characterization of starch obtained from Brosimum alicastrum Swarts Seeds. Carbohydrate Polymers, 101: 920-927
  31. Rehman, H., Shakirulla, M., Ahmad, I., Shah, S., Hamedullah. (2006). Sorption studies of nickel ions onto sawdust of Dalbergia sissoo. Journal of The Chinese Chemical Society, 53: 1045-1052
  32. Sciban, M., Klasnja, M., Skrbic, B. (2006). Modified softwood sawdust as adsorbent of heavy metal ions from water. Journal of Hazardous Materialls, 136: 266-271
  33. Stach, H., Mugele, J., Janchen, J., Weiler, E. (2005). Influence of cycle temperature on the thermochemical heat storage densities in the systems water/microporous and water/mesoporous adsorbents. Adsorption, 11: 393-404
  34. Szostak, R. (2003). Handbook of Molecular Seives, Van Norstrand Reinhold, New York
  35. Temkin, MI., Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physiochim USSR,12: 327-356
  36. Trubiano, PC. (1986). Succinate and substituted succinic derivates of starch. In OB Wurzburg (Ed.), Modified starches: Properties and uses (pp. 131-147). Boca Raton, FL: CRC Press
  37. Voudrias, E., Fytianos, F., Bozani, E. (2002). Sorption description isotherms of dyes from aqueous solutions and waste waters with different sorbent materials. Global Nest The International Journal, 4: 75-83
  38. Wang, XS., Chen, LF., Li, FY., Chen, KL., Wan, WY., Tang, YJ. (2010). Removal of Cr (VI) with wheat residue derived black carbon: Reaction mechanism and adsorption performance. Journal of Hazardous Materials, 175: 816-822
  39. Wan Ngah, WS., Hanafiah, MAKM. (2007). Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Biosource Technology, 99: 3935-3948
  40. Wei Rong, Y., Hui Yuan, Y. (2002). Adsorbent characteristic of porous starch. Starch, 54:260-263
  41. Wu, P., Gao, H., Sun, J., Ma, T., Liu, Y., Wang, F. (2012). Biosorptive dehydration of tert-butyl alcohol using a starch-based adsorbent: characterization and thermodynamics. Bioresource Technology, 107, 437–43
  42. Wurzburg, OB. (1986). Introduction. In OB Wurzburg (Ed.), Modified starches: Properties and uses (pp. 4-15). Boca Raton, FL: CRC Press
  43. Yuliana, M., Huynh, LH., Ho, QP., Truong, CT., Ju, YH. (2012). Defatted cashew nut shell starch as renewable polymeric material: isolation and characterization. Carbohydrate Polymers, 87: 2576-2581
  44. Zhou, Y., Zhang, C., Xu, J., Qu, P., Han, H., Wang, J., Zhang, Y., Luo, X. (2012). Degradation of corn starch with NaOH/urea and synthesis of DS-g-AA copolymers. Advance Materials Research, 554-556: 250-253
  45. Zhu, F. (2014). Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydrate Polymers

Last update:

  1. Air dehumidification with advance adsorptive materials for food drying: A critical assessment for future prospective

    Mohamad Djaeni, Dewi Qurrota A’yuni, Misbahudin Alhanif, Ching Lik Hii, Andri Cahyo Kumoro. Drying Technology, 39 (11), 2021. doi: 10.1080/07373937.2021.1885042

Last update: 2024-11-21 02:02:45

No citation recorded.