skip to main content

PENGARUH ELECTRO SHIELD SYSTEM (EES) PADA BOTTOM SET GILL NET TERHADAP HASIL TANGKAPAN ELASMOBRANCHII DI PERAIRAN TANJUNG PANDAN, KEPULAUAN BANGKA BELITUNG

*Aristi Dian Purnama Fitri  -  Program Studi Perikanan Tangkap, Indonesia
Herry Boesono  -  Program Studi Perikanan Tangkap, Indonesia
Kukuh Eko Prihantoko  -  Program Studi Perikanan Tangkap, Indonesia
Dwi Yoga Gautama  -  World Wildlife Fund for Nature Foundation, Indonesia, Indonesia
Desca E Dewi  -  Program Studi Perikanan Tangkap
Fajar Adiyanto  -  Program Studi Perikanan Tangkap, Indonesia

Citation Format:
Abstract

Electro Shield System  (ESS) adalah suatu perangkat elektronik sebagai alat bantu untuk mencegah tertangkapnya biota lasmobranchii yang umumnya sebagai bycatch pada saat operasi penangkapan bottom set gill net. Penelitian ini bertujuan untuk menganalisis pengaruh frekuensi ESS (Electro Shield System) sebesar 55 Hz dan 100 Hz selama operasi penangkapan pada jaring insang dasar (bottom set Gill net) terhadap biota elasmobranch. Metode penelitian adalah eksperimental fishing, dilakukan di perairan Tanjung Pandan, Bangka. Kepulauan Belitung di Indonesia dari bulan Maret hingga Mei, 2017. Variabel perlakuan adalah operasi penangkapan bottom set gill net yang dipasang alat ESS frekuensi ESS 55 Hz dan 100 Hz dibandingkan dengan bottom set gill net tanpa dipasang ESS (kontrol) untuk mengetahui hasil tangkapan elasmobranchii. Tangkapan Elasmobranch pada bottom set Gill net dengan ESS 55 Hz lebih rendah jumlahnya (5,26%) dibandingkan dengan tangkapan dengan ESS 100 Hz (6,21%) dan tanpa ESS (7,08%). Analisis statistik ANOVA (tanda 0,05) menunjukkan perbedaan yang signifikan antara bottom set gill net dengan dan tanpa ESS 55 Hz dan 100 Hz. Hal ini menunjukkan bahwa ESS dengan frekuensi 55 Hz dapat dideteksi oleh biota elasmobranch dalam organ ampullae lorenzini, sehingga tidak terperangkap pada bottom set Gill net.

Electro Shield System  (ESS) was an electronic device as a tool to prevent the capture of common lasmobranchii biota as a by-catch during a bottom set gill net capture operation.The aim of research was analysed the effect of ESS (Electro Shield System ) frequency of 55 Hz and 100 Hz during the capture operation on bottom set Gill net against elasmobranch biota. The research method was an experimental fishing, conducted in the Tanjung Pandan waters of the Bangka. Belitung Islands in Indonesia from March to May, 2017. The treatment variable was the bottom set gill net capture operation that is installed ESS 55 Hz and 100 Hz frequency compared to without ESS (control) to find out the elasmobranch catch. Elasmobranch catches on set bottom set Gill nets with ESS 55 Hz were lower (5.26%) compared to catches with 100 Hz (7.08%) and without ESS (7.08 %). Statistical analysis of ANOVA (sign 0.05) shows a significant difference between bottom set Gill nets with and without ESS 55 Hz and 100 Hz. This indicates that an Electro Shield System  with a frequency of 55 Hz can be detected by elasmobranch biota in the organs of ampullae lorenzini, so as not to be caught on the bottom set Gill net.

Fulltext View|Download
Keywords: ESS (Electro Shield System); Elasmobranch; Frekuensi; Perairan Tanjung Pandan

Article Metrics:

Article Info
Section: Research Articles
Language : IND
  1. Baker, C. A, and Carlson, B. A. 2018. Electric Signals. Encyclopedia of Animal Behavior 2nd edition. 1-13 Pp. doi: 10.1016/B978-0-12-809633-8.01105-5
  2. Clarke, S.E., A. Longtin, L. Maler. 2015. Contrast coding in the electro sensory system: Parallels with visual computation. Nat. Rev. Neurosci. 16 : 733-744. http://doi.org/10.1038/nrn4037
  3. Colling, S.P.; R.M. Kempster; K.E. Yopak. 2015. Physiology of Elasmobranch Fishes: Structure and Interaction with Environment: Volume 34A (Fish Physiology). DOI: http://dx.doi.org/10.1016/B978-0-12-801289-5.00002-X
  4. Drymon, J. M., and S. B. Scyphers. 2017. Attitudes And Perceptions Influence Recreational Angler Support For Sharkconservation Andfisheries Sustainability. Marine Policy 81:153–159. https://doi.org/10.1016/j.marpol.2017.03.001
  5. Douglas, R. F, D.F. Kyle, C. F. Melanie. 2007. Semiconductor Gel in Shark Sense Organs?. Neuroscience Letters 426:166–170. https://doi.org/10.1016/j.neulet.2007.08.064
  6. Fahmi and Dharmadi. (2005). Shark Fishery Status and the Management Aspects. Oseana 30(1), 1-8
  7. Fitri, A.D.P., Boesono, H, Sabdono, A and Adlina, N. (2017a). Resources Management Strategy for Mud Crabs (Scylla spp.) in Pemalang Regency. In Hadiyanto (Eds.), IOP Conf. Series: Earth and Environmental Science (pp. 1-6). Institute of Research and Community Services, Diponegoro University, Indonesia, 576 pp
  8. Fitri, A.D.P., Boesono, H, Sabdono, A, Supadminingsih, F.N. and Adlina, N. (2017b). The Mud Crab (Scylla serrata) Behavior in Different Inclination Angles of Funnel and Escape Vent for Trap Net. AACL Bioflux 10(2), 191-199
  9. Fitri, A.D.P., Boesono, H., Prihantoko, K.E., Gautama, D.Y. (2018). Electro Shield System Applications on Set Gill net as Efforts to Preserve Shark Resources. Journal of Physics: Conference Series 1025(1), 012022
  10. Grubbs, R.D., and Kraus, R.T. (2010). Animal Behaviour. In Michael D. Breed and Janice Moore (Eds.). Fish Migration (pp. 715-724). Copyright Elsevier Ltd. All rights reserved. Academic Press., 2672 pp
  11. Indonesia Institute of Science. 2015. Review the status of shark fishery and its conservation efforts in Indonesia. Directorate of Area Conservation and Type of Fish, Ministry of Marine Affairs and Fisheries. 179 pages. ISSN / ISBN / IBSN: 978-602-7913-09-7
  12. Jordan, L.K., Mandelman, J.W., Kajiura, S.M., 2011. Behavioural responses to weak electric fields and a lanthanide metal in two shark species. J. Exp. Mar. Biol. Ecol. 409, 345–350
  13. Kempster, R.M., McCarthy, I.D., Collin, S.P., 2012. Phylogenetic and ecological factors influencing the number and distribution of electroreceptors in elasmobranchs. J. Fish Biol. 80, 2055–2088
  14. Myrberg, A. (2001). The Acoustic Biology of Elasmobranchs. Environmental Biology of Fishes, 60(1), 31-46. https://doi.org/10.1023/A:1007647021634
  15. O’Connell, C.P, E.R. Stround and P. He. (2012). The Emerging Field of Electro Sensory and Semi Chemical Shark Repellents: Mechanisms of Detection, Overview of Past Studies, and Future Directions. Ocean and Coastal Management, 30, 1-10. http://dx.doi.org/10.1016/j.ocecoaman.2012.11.005
  16. Porsmoguer, Sebastian Biton; D B˘anaru.; C. F. Boudouresque.; van Dekeyser.; and C. Almarcha. (2015). Hooks Equipped with Magnets Can Increase Catches of Blue Shark (Prionace glauca) By Long line Fishery. Fisheries Science, 172, 345-351. https://doi.org/10.1016/j.fishres.2015.07.016
  17. Purnomo, A.H. & T. Apriliani. 2007. Nilai Ekonomi Perikanan Cucut dan Pari dan Implikasi Pengelolaannya. Jurnal Kebijakan dan Riset Sosial Ekonomi Kelautan dan Perikanan, Vol. 2 No. 2
  18. Richards, R.J., V. Raoult, D.M. Powter, and T.F. Gaston. 2018. Permanent Magnets Reduce Bycatch Of Benthic Sharks In An Ocean Trap Fishery. Fisheries Research 208: 16–21. https://doi.org/10.1016/j.fishres.2018.07.006
  19. Robbins W.D., V.M. Peddemors, S.J. Kennelly. 2011. Assessment Of Permanent Magnets And Electropositive Metals To Reduce The Line-Based Capture Of Galapagos Sharks, Carcharhinus Galapagensis. Fisheries Research 109:100–106. https://doi.org/10.1016/j.fishres.2011.01.023
  20. Sawon. (2007). Vertical Line Characteristics Operated in Bangka Belitung Waters. Engineering Research Bulletin, 5(1), 33-40
  21. Schäfer T. B, C. E. Malavasi, P. O. Favaron, C. E. Ambrósio, M.A. Miglino, F. D. Amorim , G. Rici . 2012. Morphological observations of ampullae of lorenzini in squatina guggenheim and s. Occulta (Chondrichthyes, Elasmobranchii, Squatinidae). Microsc. Res. Tech. 75, 1213–1217. doi: 10.1002/jemt.22051
  22. Sembiring, A.; Pertiwi, N.P.D.; Mahardini, A.; Wulandari, R.; Kurniasih, E.M.; Kuncoro, A.W.; Cahyani, N.K.D.; Anggoro, A.W.; Ulfa, M.; Madduppa, H.; Carpenter, K.E.; Barber, P.H.; and Mahardika, G.N. (2015). DNA Barcoding Reveals Targeted Fisheries for Endangered Sharks in Indonesia. Fisheries Research, 164, 130–134. https://doi.org/10.1016/j.fishres.2014.11.003
  23. Westlake, E.L., M. Williams, N. Rawlinson. 2018. Behavioural Responses Of Draughtboard Sharks (Cephaloscyllium Laticeps) To Rare Earth Magnets: Implications For Shark Bycatch Management Within The Tasmanian Southern Rock Lobster Fishery. Fisheries Research 200: 84–92. https://doi.org/10.1016/j.fishres.2018.01.001
  24. White, W.T., and Cavanagh, R.D. 2007. Whale Shark Landings in Indonesian Artisanal Shark and Ray Fisheries. Fisheries Research 84:128–131. https://doi.org/10.1016/j.fishres.2006.11.022
  25. Wilkens, Lon A.; M. H. Hofmann; W. Wojteneka. (2002). The Electric Sense of the Paddlefish: A Passive System For The Detection And Capture Of Zooplankton Prey. Journal of Physiology, 96, 363-377. https://doi.org/10.1016/S0928-4257(03)00015-9
  26. Zainudin, I. M. 2011. Pengelolaan Perikanan Hiu Berbasis Ekosistem di Indonesia. Tesis. Universitas Indnesia, Depok. 93.pp
  27. Zimmerhackel, J. S., A. A. Rogers, M. G. Meekan, K. Ali, D. J. Pannell, and M. E. Kragt. 2018. How Shark Conservation In The Maldives Affects Demand For Dive Tourism. Tourism Management 69:263–271. https://doi.org/10.1016/j.tourman.2018.06.009

Last update:

No citation recorded.

Last update: 2025-01-21 23:07:44

No citation recorded.