skip to main content

KARAKTERISTIK HAMBUR BALIK AKUSTIK PADA IKAN KAKAKTUA (Chlorurus sordidus) MELALUI PENGUKURAN SECARA EX-SITU DENGAN METODE AKUSTIK

*Deddy Bakhtiar  -  Universitas Bengkulu, Indonesia
Indra Jaya  -  Departemen Ilmu dan Teknologi Kelautan Fakultas Perikanan dan Ilmu Kelautan IPB University, Bogor, Indonesia
Henry M Manik  -  Departemen Ilmu dan Teknologi Kelautan Fakultas Perikanan dan Ilmu Kelautan IPB University, Bogor, Indonesia
Hawis H Madduppa  -  Departemen Ilmu dan Teknologi Kelautan Fakultas Perikanan dan Ilmu Kelautan IPB University, Bogor, Indonesia

Citation Format:
Abstract

Ikan kakaktua (Chlorurus sordidus) merupakan salah satu ikan herbivora pada ekosistem terumbu karang yang memiliki peran dalam menjaga kesehatan terumbu karang. Penelitian ini bertujuan untuk mempelajari karakteristik hambur balik akustik ikan kakaktua dan hubungannya dengan ukuran panjang ikan. Manfaat dari penelitian ini berguna untuk pendugaan distribusi ukuran dan kelimpahan ikan kakaktua di suatu perairan. Pengukuran hambur balik akustik dilakukan secara ex-situ menggunakan metode tethered, dimana ikan kakaktua digantung pada kedalaman 2 meter di bawah transduser dan di sounding dengan echosounder Simrad EK-15 pada frekuensi 200 kHz. Data hasil perekaman dianalisis dengan software Echoview 8 untuk memperoleh data target strength (TS). Hasil penelitian menunjukkan bahwa hambur balik ikan kakaktua (C. sordidus) memiliki nilai TS rata-rata -49.42 dB pada ukuran panjang baku berkisar 14 sampai 22 cm. Perbedaan nilai TS pada ikan kakaktua diduga dipengaruhi ukuran panjang tubuh, panjang gelembung renang dan aktifitas renang.  Rasio ukuran panjang gelembung renang dan panjang tubuh tidak menunjukkan keterkaitannya dengan nilai TS. Hubungan antara TS dan panjang baku ikan kakaktua (C. sordidus) diformulasikan dalam persamaan TS = 10,43 Log SL – 62,65 (R2 = 0,752). Hasil ini berbeda dengan ketetapan Love (1977) dimana hambur balik akustik dari ikan merupakan kuadrat dari ukuran panjang ikan yang tetapkan dengan nilai slope (b) sebesar 20.

 

Parrot fish (Chlorurus sordidus) is one of the herbivorous fish in coral reef ecosystems that has a role in maintaining the health of coral reefs. This study aims to study the characteristics of acoustic backscattering of parrot fish and their relationship to fish length measurements. The benefits of this study are useful for estimating the size and abundance distribution of parrot fish in a waters. Acoustic backscattering measurements were carried out ex-situ using the tethered method, where the parrot fish was hung at a depth of 2 meters below the transducer and sounded with a Simrad EK-15 echosounder at a frequency of 200 kHz. Recording data were analyzed with Echoview 8 software to obtain target strength (TS) data. The results showed that the backscatter of parrot fish (C. sordidus) had an average TS value of -49.42 dB at standard lengths ranging from 14 to 22 cm. Differences in TS values in parrot fish are thought to be influenced by body length, swimbladder length and swimming activity. The ratio of the size of the swimbladder length and body length does not indicate an association with TS values. The relationship between TS and standard length of parrot fish (C. sordidus) was formulated in the equation TS = 10.43 Log SL - 62.65 (R2 = 0.752). This result is different from the Love (1977) provision where the acoustic backscatter of a fish is the square of the length of the fish set with a slope (b) of 20.

 

Fulltext View|Download
Keywords: target strength; gelembung renang; ikan herbivora; metode tethered; 20 log L

Article Metrics:

  1. Bakhtiar D, Djamali A, Arifin Z, Sarwono T. (2012). Struktur Komunitas Ikan terumbu di Perairan Pulau Tikus Kota Bengkulu. Di dalam: Bakti D, Rosmayati, Putri LAP, Handarini R, Latifah S, Tafsin M, Razali, Sabrina T, Hanum H, Julianti E, Ginting J, Irmansyah T, Fauzi, editor. Peningkatan Presisi Menuju Pertanian Berkelanjutan. Seminar Nasional dan Rapat Tahunan Bidang Ilmu-ilmu Pertanian BKS-PTN Wilayah Barat Tahun 2012; 2012 April 3-5; Medan (ID): USU Pr. Volume 2:764-772
  2. Benoit-Bird K.J., Whitlow W.L.A., Christopher D.K., Christopher T. (2003). Acoustic backscattering by deepwater fish measured in situ from a manned submersible. Deep-Sea Research I, 50: 221–229
  3. Boswell KM, Kaller MD, Cowan JH Jr, Wilson CA. (2008). Evaluation of target strength–fish length equation choices for estimating estuarine fish biomass. Hydrobiologia. 610:113–123. DOI 10.1007/s10750-008-9425-x
  4. Choat J.H., Clements K.D., and Robbins W.D. (2002). The trophic status of herbivorous fishes on coral reefs. Marine Biology, 140: 613–623
  5. Choat J.H., Robertson D.R., Ackerman J.L., Posada J.M. (2003). An age-based demographic analysis of the Caribbean stoplight parrotfish Sparisoma viride. Marine Ecology Progress Series, 246: 265–277
  6. Costa B, Taylor JC, Kracker L, Battista T, Pittman S (2014) Mapping Reef Fish and the Seascape: Using Acoustics and Spatial Modeling to Guide Coastal Management. PLoS ONE 9(1): e85555. doi: 10.1371/journal.pone.0085555
  7. Damhudy D., Kamal M.M., dan Ernawati Y. (2011). Kondisi Kesehatan Terumbu Karang Berdasarkan Kelimpahan Ikan Herbivora di Kecamatan Pulau Tiga Kabupaten Natuna. Jurnal Ilmu-ilmu Perairan dan Perikanan Indonesia, 17(1): 215-225
  8. Foote K.G., Knudsen H.P., Vestnes G.D., MacLennan N., Simmonds E.J. (1987). Calibration of acoustic instruments for fish density estimation: a practical guide. ICES Coop. Res. Rep. 144, 1–69
  9. Frouzova J., Kubecka J., Balk H., Frouz J. (2005). Target strength of some Europeanfish species and its dependence on fish body parameters. Fish Res. 75: 86–96
  10. Gastauer S., Scoulding B., and Parsons M. (2017). Towards acoustic monitoring of a mixed demersal fishery based on commercial data: The case of the Northern Demersal Scalefish Fishery (Western Australia). Fisheries Research 195: 91–104
  11. Gauthier, S., and Rose, G. A. (2001). The target strength of encaged Atlantic redfish (Sebastes spp.). ICES Journal of Marine Science, 58: 562–568
  12. Gauthier, S., and Rose, G. A. (2002). In situ target strength studies on Atlantic redfish (Sebastes spp.). ICES Journal of Marine Science, 59: 805–815. doi: 10.1006/jmsc.2002.1248
  13. Godlewska M, Colon M, Doroszczyka L, Długoszewski B, Verges C, Guillard J. 2009. Hydroacoustic measurements at two frequencies: 70 and 120 kHz –consequences for fish stock estimation. Fish Res 96 : 11–16
  14. Grimsditch G.D. dan Salm R.V. (2006). Coral Reef Resilience and Resistance to Bleaching. IUCN, Gland, Switzerland. 52 p
  15. Henderson M.J., Horne J.K., Towler R.H. (2007). The influence of beam position and swimming direction on fish target strength. ICES J Mar Sci. 65:226–237
  16. Horne J.K., Walline P.D., and Jech J.M. (2000). Comparing acoustic model predictions to in situ backscatter measurements of fish with dual-chambered swimbladders. Journal of Fish Biology, 57:1105–1121. doi: 10.1006/jfbi.2000.1372
  17. Kuiter R.H. and Tonozuka, T. (2001). Pictorial guide to Indonesian reef fishes. Zoonetics, Australia
  18. Lestari D.P., Bambang A.N., Kurohman F. (2017). Analisis Faktor-Faktor yang Mempengaruhi Harga Ikan Kakatua (Scarus Sp) di Pulau Panggang, Kepulauan Seribu, DKI Jakarta. Journal of Fisheries Resources Utilization Management and Technology, 6 (4) : 215-223
  19. Love R.H. (1971). Dorsal-aspect target strength of an individual fish. J Acoust Soc Am. 49(3): 816–823
  20. Love R.H. (1977). Target strength of an individual fish at any aspect. J.Acoust. Soc. Am. 62 :1397-1403
  21. McClatchie S., Alsop J., Coombs R.F. (1996). A re-evaluation of relationshipsbetween fish size, acoustic frequency, and target strength. ICES J Mar Sci. 53:780–791
  22. McClatchie S., Macaulay G.J., Coombs R.F. (2003). A requiem for the use of 20 log10 Length for acoustic target strength with special reference to deep-sea fishes. ICES J Mar Sci. 60:419–428
  23. Medwin H dan Clay CS. (1998). Applied Ocean Acoustics: Fundamentals of Acoustical Oceanography. Academic Press, New York. 712 pp
  24. Patanda M., Rahmani U. (2018). Hubungan Panjang-Berat dan Pola Pertumbuhan Ikan Kakatua (Chlorurus strongycephalus ) di Taman Nasional Wakatobi. Jurnal Teknologi Perikanan dan Kelautan, 9 (2): 115 – 121
  25. Rani C. (2003). Perikanan dan Terumbu Karang yang Rusak: Bagaimana Mengelolanya? Jurnal Bionatura, 5, (2) : 97 – 111
  26. Setiawan W., Jaya I., Hestirianoto T., Pujiati S., Priatna A., Ma'mun A. (2018). Empirical acoustic TS - Length relationship for Torpedo Scad (Megalaspis cordyla). IOP Conf. Series: Earth and Environmental Science 176 (2018) 012027 doi :10.1088/1755-1315/176/1/012027
  27. Simmonds EJ, and MacLennan DN. 2005. Fisheries Acoustics, Theory and Practice. Blackwell Publishing, Oxford, 437pp
  28. Sunardi, Yudhana A., Din J., Hassan R.B.R. (2008). Swimbladder on Fish Target Strength. TELKOMNIKA, 6 (2) : 139 – 144
  29. Tátrai I., Specziár A., György A.I., Bíró P. (2008). Comparison of fish size distribution and fish abundance estimates obtained with hydroacoustics and gill netting in the open water of a large shallow lake Ann. Limnol. - Int. J. Lim., 44 (4), 231- 240
  30. Woillez, M., Walline, P.D., Ianelli, J.N., Dorn, M.W., Wilson, C.D., Punt, A.E., 2016. Evaluating total uncertainty for biomass-and abundance-at-age estimates from eastern Bering Sea walleye pollock acoustic-trawl surveys. ICES J. Mar. Sci. J. Cons. 73, 2208–2226

Last update:

No citation recorded.

Last update: 2024-11-21 04:02:16

No citation recorded.