skip to main content


Muliadin Muliadin  -  Sekolah Tinggi Perikanan dan Kelautan Palu - STPL Palu (Institute of Fisheries and Marine), Indonesia
Didit Kustantio Dewanto scopus  -  Sekolah Tinggi Perikanan dan Kelautan Palu - STPL Palu (Institute of Fisheries and Marine), Indonesia
Roni Hermawan  -  Sekolah Tinggi Perikanan dan Kelautan Palu - STPL Palu (Institute of Fisheries and Marine), Indonesia
Putut Har Riyadi orcid scopus publons  -  Department of Fisheries Post Harvest Technology, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Indonesia
*Wendy Alexander Tanod orcid scopus publons  -  Department of Fisheries and Marine, , Indonesia

Citation Format:
Sinularia gibberosa is one of the soft coral species reported to produce bioactive compounds for pharmaceutical’s potential. Soft corals produce compounds with antibacterial and antioxidant properties. This study aimed to obtain a bioactive profile of S. gibberosa, which could scavenge DPPH radicals and inhibit the growth of Listeria monocytogenes, Pseudomonas aeruginosa, and Salmonella typhimurium. The research included a sampling of soft corals, extraction by maceration, identification of chemical profiles using LC-HRMS, the assay for antibacterial activity (well-diffusion method), antioxidant assay (DPPH method), and total phenolic content (Folin–Ciocalteu method). Sampling was conducted in Palu Bay, Central Sulawesi, Indonesia. Based on monomorphic colonies and sclerites, soft coral samples were identified as Sinularia gibberosa. The chemical profiles of S. gibberosa extracts was dominated by trimethylethanolamine (22.03%), arachidonic acid (14.13%), (3R)-3-hydroxy-4-(trimethylazaniumyl)-butanoate (10.90%), (5Z,8Z,11Z,14Z,16R)-16-Hydroxy-5,8,11,14-icosatetraenoic acid (5.64%), Octyl decyl phthalate (4.18%), and N-Methylnicotinic acid (3.63%). The antibacterial assaying at 300 mg/mL of S. gibberosa extracts showed moderate to strong antibacterial activity, with the inhibition zone diameter of L. monocytogenes (15.11 ± 0.70 mm), P. aeruginosa (13.44 ± 0.84 mm), and S. typhimurium (19.78 ± 0.39 mm). S. gibberosa extracts showed strong antioxidant activity, with an IC50 of 54.69 ± 0.34 µg/mL and total phenolic content was 5423.76 ± 14.00 mg GAE/25 mg dry extract. Based on the results, S. gibberosa shows the potential for antibacterial and antioxidant activity. This study indicates that soft corals origin Palu Bay, Central Sulawesi, Indonesia, are potential organisms in the discovery and development of antibacterial and antioxidant agents.
Fulltext View|Download
Keywords: Bioactive compounds; Listeria monocytogenes; soft coral; Pseudomonas aeruginosa; Salmonella typhimurium
Funding: Directorate of Research and Community Service, Deputy for Strengthening Research and Development, Ministry of Research and Technology/National Research and Innovation Agency, Republic of Indonesia

Article Metrics:

  1. Afifi, R., Abdel-Nabi, I. M., & El-Shaikh, K. (2016). Antibacterial activity from soft corals of the Red Sea, Saudi Arabia. Journal of Taibah University for Science, 10(6), 887–895.
  2. Alves, E., Dias, M., Lopes, D., Almeida, A., Domingues, M. D. R., & Rey, F. (2020). Antimicrobial lipids from plants and marine organisms: An overview of the current state‐of‐the‐ art and future prospects. Antibiotics, 9(8), 1–88.
  3. Apri, R., Zamani, N. P., & Effendi, H. (2013). Exploration of Soft Coral as Antioxidant at Pongok Island, South Bangka. Jounal of Fisheries and Marine Technology, 4(2), 211–217.
  4. Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6, 71–79.
  5. Bishara, A., Rudi, A., Benayahu, Y., & Kashman, Y. (2007). Three biscembranoids and their monomeric counterpart cembranoid, a biogenetic diels-alder precursor, from the soft coral Sarcophyton elegans. Journal of Natural Products, 70(12), 1951–1954.
  6. Blainski, A., Lopes, G. C., & De Mello, J. C. P. (2013). Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules, 18(6), 6852–6865.
  7. Blois, M. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199–1200.
  8. Bloomfield, S. F. (1991). Methods for assesing antimicrobial activity in mechanism of action of chemical biocides thesis study and explanation. In S. Denyer & B. W. Hogo (Ed). Blackwell Scientific Publication Ltd. 22 p
  9. Blunt, J. W., Copp, B. R., Keyzers, R. A, Munro, M. H. G., & Prinsep, M. R. (2013). Marine natural products. Natural Product Reports, 30(2), 237–323.
  10. Byju, K., Anuradha, V., Rosmine, E., Sankar, H. S. H., Gopinath, A., Peter, K. J. P., Kumar, T. R. G., Vasundhara, G., Kumar, N. C., & Nair, S. M. (2015). DPPH scavenging property of active principles from soft coral Sarcophyton flexuosum Tixier-Durivault. Pharmaceutical Chemistry Journal, 49(3), 178–182.
  11. Cheng, K. C., Wu, J. Y., Lin, J. T., & Liu, W. H. (2013). Enhancements of isoflavone aglycones, total phenolic content, and antioxidant activity of black soybean by solid-state fermentation with Rhizopus spp. European Food Research and Technology, 236(6), 1107–1113.
  12. Da’i, M., & Triharman, F. (2010). DPPH (1,1-diphenyl-2-pikrilhidrazil) radical scavenging activity of alfa mangostin that isolated from mangosteen rind (Garcinia mangostana L.). Pharmacon, 11(2), 47–50
  13. Dewanto, D. K., Finarti, F., Hermawan, R., Ndobe, S., Riyadi, P. H., & Tanod, W. A. (2019). Aktivitas antioksidan ekstrak karang lunak asal Teluk Palu, Sulawesi Tengah, Indonesia. Jurnal Pascapanen Dan Bioteknologi Kelautan Dan Perikanan, 14(2), 163–178.
  14. Do Nascimento, P. G. G., Lemos, T. L. G., Bizerra, A. M. C., Arriaga, A. M. C., Ferreira, D. A., Santiago, G. M. P., Braz-Filho, R., & Costa, J. G. M. (2014). Antibacterial and antioxidant activities of ursolic acid and derivatives. Molecules, 19(1), 1317–1327.
  15. Dobretsov, S., Al-Wahaibi, A. S. M., Lai, D., Al-Sabahi, J., Claereboudt, M., Proksch, P., & Soussi, B. (2015). Inhibition of bacterial fouling by soft coral natural products. International Biodeterioration & Biodegradation, 98, 53–58.
  16. Fabricus, K., & Alderslade, P. (2001). Soft corals and sea fans, a comprehensive guide to the tropical shallow-water genera of the Central-West Pasific, The Indian Ocean and the Red Sea. Queensland: Australian Institute of Marine Science. 264 p
  17. Fekih, N., Allali, H., Merghache, S., Chaïb, F., Merghache, D., El Amine, M., Djabou, N., Muselli, A., Tabti, B., & Costa, J. (2014). Chemical composition and antibacterial activity of Pinus halepensis Miller growing in West Northern of Algeria. Asian Pacific Journal of Tropical Disease, 4(2), 97–103.
  18. Hsiao, T.H., Sung, C.S., Lan, Y.H., Wang, Y.C., Lu, M.C., Wen, Z.H., Wu, Y.C., & Sung, P.J. (2015). New Anti-Inflammatory cembranes from the cultured soft coral Nephthea columnaris. Marine Drugs, 13(6), 3443–3453.
  19. Huliselan, Y. M., Runtuwene, M. R. J., & Wewengkang, D. S. (2015). Antioxidant activity of ethanol, ethyl acetate and n-hexane extract from seswanua leaves (Clerodendron squamatum Vahl.). Pharmacon, 4(3), 155–163
  20. Ishii, T., Matsuura, H., Zhan, Z. Q., & Vairappan, C. S. (2009). A new norsesquiterpenoid from a Bornean soft coral genus Nephthea. Molecules, 14(11), 4591–4596.
  21. Jawetz, E., Melnick, J., & Adelberg, E. (2005). Mikrobiologi Kedokteran. Penerbit Buku Kedokteran EGC. Jakarta 862 p
  22. Jin, C., Gibani, M. M., Pennington, S. H., Liu, X., Ardrey, A., Aljayyoussi, G., Moore, M., Angus, B., Parry, C. M., Biagini, G. A., Feasey, N. A., & Pollard, A. J. (2019). Treatment responses to azithromycin and ciprofloxacin in uncomplicated Salmonella typhi infection: a comparison of clinical and microbiological data from a controlled human infection model. PLoS Neglected Tropical Diseases, 13(12), e0007955.
  23. Kabara, J. J., Swieczkowski, D. M., Conley, A. J., & Truant, J. P. (1972). Fatty acids and derivatives as antimicrobial agents. Antimicrobial Agents and Chemotherapy, 2(1), 23–28
  24. Karthikeyan, S. C., Velmurugan, S., Donio, M. B. S., Michaelbabu, M., & Citarasu, T. (2014). Studies on the antimicrobial potential and structural characterization of fatty acids extracted from Sydney rock oyster Saccostrea glomerata. Annals of Clinical Microbiology and Antimicrobials, 13(1), 1–11.
  25. Lamuela-Raventós, R. M. (2017). Folin-Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. In R. Apak, E. Capanoglu, & F. Shahidi (Ed.), Measurement of Antioxidant Activity and Capacity: Recent Trends and Applications. John Wiley & Sons Ltd. New Jersey. pp. 107–115
  26. Leal, M. C., Puga, J., Serodio, J., Gomes, N. C. M., & Calado, R. (2012). Trends in the discovery of new marine natural products from invertebrates over the last two decades - where and what are we bioprospecting? PLoS ONE, 7(1), e30580.
  27. Liang, L. F., Wang, X. J., Zhang, H. Y., Liu, H. L., Li, J., Lan, L. F., Zhang, W., & Guo, Y. W. (2013). Bioactive polyhydroxylated steroids from the Hainan soft coral Sinularia depressa Tixier-Durivault. Bioorganic & Medicinal Chemistry Letters, 23(5), 1334–1337.
  28. Lin, H. F., Su, H. J., Lee, N. L., & Su, J. H. (2013). Cembranoids from the cultured soft coral Sinularia gibberosa. Natural Product Communications, 8(10), 1363–1364.
  29. Liu, L., Zheng, Y.Y., Shao, C.L., & Wang, C.Y. (2019). Metabolites from marine invertebrates and their symbiotic microorganisms: molecular diversity discovery, mining, and application. Marine Life Science & Technology, 1(1), 60–94.
  30. Liu, R. M., Li, Y. B., Liang, X. F., Liu, H. Z., Xiao, J. H., & Zhong, J. J. (2015). Structurally related ganoderic acids induce apoptosis in human cervical cancer HeLa cells: Involvement of oxidative stress and antioxidant protective system. Chemico-Biological Interactions, 240, 134–144.
  31. Long, F., Yang, H., Xu, Y., Hao, H., & Li, P. (2015). A strategy for the identification of combinatorial bioactive compounds contributing to the holistic effect of herbal medicines. Nature Publishing Group, January, 1–11.
  32. Marfuati, N., Rakhmawatie, M. D., & Akmalia, N. R. (2017). The effectivity of ciprofloxacin on the growth of uropatogenic Escherichia coli in vitro. Jurnal Kedokteran Muhammadiyah, 2, 1–7
  33. Melannisa, R., Da’i, M., & Rahmi, R. T. (2011). Radical scavenging activity assay and determination of total phenolic content of ethanol extract three curcuma genus rhizomes and figerroot rhizome (Boesenbergia pandurata). Pharmacon, 12(1), 40–43
  34. Merzenich, G. U., Panek, D., Zeitler, H., Vetter, H., & Wagner, H. (2010). Drug development from natural products: Exploiting synergistic effects. Indian Journal of Experimental Biology, 48(March), 208–219
  35. Molyneux, P. (2004). The use of the stable free radical diphenylpicryl- hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26, 211–219.
  36. Paudel, B., Bhattarai, H. D., Kim, I. C., Lee, H., Sofronov, R., Ivanova, L., Poryadina, L., & Yim, J. H. (2014). Estimation of antioxidant, antimicrobial activity and brine shrimp toxicity of plants collected from Oymyakon region of the republic of Sakha (Yakutia), Russia. Biological Research, 47(1), 1–6.
  37. Putra, M. Y., Murniasih, T., Swasono, R. T., Wibowo, J. T., Saputri, A. N. C., Widhiana, M. R., & Arlyza, I. S. (2016). Secondary metabolites and their biological activities in Indonesian soft coral of the genus Lobophytum. Asian Pacific Journal of Tropical Biomedicine, 6(11), 909–913.
  38. Putra, M. Y., Wibowo, J. T., Murniasih, T., & Rasyid, A. (2016). Evaluation of antibacterial activity from Indonesian marine soft coral Sinularia sp. American Institute of Physics Conference Proceedings, 1744, 020039. https://doi: 10.1063/1.4953513
  39. Radić, N., & Strukelj, B. (2012). Endophytic fungi: the treasure chest of antibacterial substances. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 19(14), 1270–1284.
  40. Rajaram, S., Ramesh, D., Ramulu, U., Anjum, M., Kumar, P., Murthy, U. S. N., Hussain, M. A., Sastry, G. N., & Venkateswarlu, Y. (2014). Chemical examination of the soft coral Sinularia kavarattiensis and evaluation of anti-microbial activity. Indian Journal of Chemistry - Section B Organic and Medicinal Chemistry, 53(8), 1086–1090
  41. Rice, L. B. (2008). Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. The Journal of Infectious Diseases, 197(8), 1079–1081.
  42. Riyadi, P. H., Wahyudi, D., & Tanod, W. A. (2019). Effects of dichloromethane Sarcophyton spp. extract on the lipopolysaccharide-induced expression of nuclear factor-kappa B and inducible nitric oxide synthase in mice. Veterinary World, 12(12), 1897–1902
  43. Rohman, A., Riyanto, S., & Hidayat, N. K. (2007). Antioxidant activity, total phenolics and total flavonoid contents of mengkudu (Morinda citrifolia L) leaves. Agritech, 27(4), 147–151
  44. Romansyah, Y. (2011). The content of bioactive antioxidant compound soft corals Sarcophyton sp. natural and transplantation in the coastals of Pramuka Island, Seribu Archiphelago. Thesis. IPB University. Bogor. 45 p
  45. Sun, P., Meng, L. Y., Tang, H., Liu, B. S., Li, L., Yi, Y., & Zhang, W. (2012). Sinularosides A and B, bioactive 9,11-secosteroidal glycosides from the South China Sea soft coral Sinularia humilis Ofwegen. Journal of Natural Products, 75, 1656–1659.
  46. Supriharyono. (2000). Pelestarian dan Pengelolahan Sumberdaya Alam di Wilayah Pesisir Tropis. PT. Gramedia Pustaka Utama. Jakarta. 246 p
  47. Tanod, W. A., Aristawati, A. T., Nurhani, & Mappiratu. (2018). Antifeedants activity of soft coral extract Sinularia sp. with variation of ethanol concentration. In W. A. Nugraha, A. Romadhon, & Insafitri (Ed), Proceeding of National Seminar in Fisheries and Marine III, Vol. 1. University of Trunojoyo, Madura
  48. Tanod, W. A., Aristawati, A. T., Putra, M. Y., & Muliadin. (2018). Soft Coral (Sinularia sp.) extracts with antibacterial activity. Omni-Akuatika, 14(1), 108–117.
  49. Tanod, W. A., Dewanto, D. K., Ndobe, S., Riyadi, P. H., & Putra, M. Y. (2019). Screening of antibacterial and antioxidant activity of soft corals Sinularia sp. and Sarcophyton sp. from Palu Bay Central Sulawesi. Squalen : Bulletin of Marine and Fisheries Postharvest and Biotechnology, 14(2), 73–83.
  50. Tanod, W. A., Mangindaan, R. E., & Kapojos, M. (2015). Antimitotic activity from soft coral genus Sinularia extracts. Omn-Akuatika, 11(2), 41–49.
  51. Tanod, W. A., Yanuhar, U., Maftuch, Putra, M. Y., & Risjani, Y. (2019). Screening of NO inhibitor release activity from soft coral extracts origin Palu Bay, Central Sulawesi, Indonesia. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 18(2), 126–141.
  52. Tanod, W. A., Yanuhar, U., Maftuch, Wahyudi, D., & Risjani, Y. (2019). DPPH scavenging property of bioactives from soft corals origin palu bay, Central Sulawesi, Indonesia. IOP Conf Series: Earth and Environmental Science, 236, 012121, https://doi: 10.1088/1755-1315/236/1/012121
  53. Tapilatu, Y. H. (2015). Status of drug discovery research based on marine organisms from Eastern Indonesia. Procedia Chemistry, 14, 484–492.
  54. Thao, N. P., Luyen, B. T. T., Lee, S. H., Jang, H. D., Kiem, P. V., Minh, C. V., & Kim, Y. H. (2015). Antiosteoporotic and antioxidant activities of diterpenoids from the Vietnamese soft corals Sinularia maxima and Lobophytum crassum. Medicinal Chemistry Research, 24(9).
  55. Tillah, M., Batubara, I., & Sari, R. K. (2017). Antimicrobial and Antioxidant Activities of Resins and Essential Oil From Pine (Pinus merkusii, Pinuso ocarpa, Pinus insularis) and Agathis (Agathis loranthifolia). Biosaintifika: Journal of Biology & Biology Education, 9(1), 134–139.
  56. Wright, G. D., & Sutherland, A. D. (2007). New strategies for combating multidrug-resistant bacteria. Trends in Molecular Medicine, 13(6), 260–267.
  57. Yassa, N., Masoomi, F., Rankouhi, S. R., & Hadjiakhoondi, A. (2009). Chemical composition and antioxidant activity of the extract and essential oil of Rosa damascena from Iran, population of Guilan. DARU Journal of Pharmaceutical Sciences, 17(3), 175–180
  58. Yegdaneh, A., Mohammadi, E., Mehdinezhad, N., Shabani, L., & Pour, P. M. (2020). Evaluation of cytotoxic and antioxidant activity and total phenolic content of some soft corals from the persian gulf. Iranian Journal of Pharmaceutical Sciences, 16(3), 1–10
  59. Zhang, G. W., Ma, X. Q., Su, J. Y., Zhang, K., Kurihara, H., Yao, X. S., & Zeng, L. M. (2006). Two new bioactive sesquiterpenes from the soft coral Sinularia sp. Natural Product Research, 20(7), 659–664. [pii]r10.1080/14786410500183233

Last update:

No citation recorded.

Last update: 2024-05-19 09:20:38

No citation recorded.