skip to main content

ISOLATION AND IDENTIFICATION OF BACTERIA FROM SHRIMP POND AS BIOREMEDIATION AGENT CANDIDATE TO REDUCE TOXIC AMMONIA

*Amalia Rachma Fatchiyyah  -  Coastal Resources Management, Faculty of Fisheries and Marine Sciences, Diponegoro University, Indonesia
Haeruddin Haeruddin scopus  -  Coastal Resources Management, Faculty of Fisheries and Marine Sciences, Diponegoro University, Indonesia
Ervia Yudiati scopus  -  Marine Sciences, Faculty of Fisheries and Marine Sciences, Diponegoro University, Indonesia

Citation Format:
Abstract

The accumulation of ammonia in shrimp pond is one major problem that leads to production failure. Ammonia can disturb the metabolic balance of the shrimps and making them more susceptible to disease. An approach to overcome a poor water quality in shrimp culture caused by ammonia is introduced bacteria as a bioremediation agent. The utilization and the development of the local bioremediation agent are expected to be a solution to improve water quality. This study aimed to isolate and identify bacteria from traditional shrimp pond as candidate to reduce ammonia. Bacteria were isolated in liquid enrichment medium. Bacteria identification was done through biochemical tests also molecular analysis of the 16S rRNA gene sequence using primer 27F and 1492R and phylogenetic analysis using MEGA 6.0 program. The results showed that as many as three bacteria were isolated from traditional shrimp pond. These bacteria were NAS1, NAS2, and NAS3.  Based on the analysis of 16S rRNA gene sequence, NAS1 was identified as Breoghania sp., NAS2 identified as Pseudoalteromonas ruthenica, and NAS3 identified as Halomonas beimenensis. Ammonia reduction test showed that Halomonas beimenensis and Pseudoalteromonas ruthenica were able to reduce ammonia with a percentage of 8,4% and 20,3% for five days incubation. Therefore, these bacteria could be potential candidates as a bioremediation agent to improve water quality. Meanwhile, Breoghania sp. wasn’t show positive result in ammonia reduction test.

 

Fulltext View|Download
Keywords: ammonia; bacteria; bioremediation; shrimp; 16S rRNA

Article Metrics:

  1. Abiyola, C., and Oyetayo, V.O. 2016. Isolation and biochemical characterization of microorganisms associated with the fermentation of kersting’s groundnut (Macrotyloma geocarpum). Res J Microbiol, 11, 2-3. DOI: 10.3923/jm.2016.47.55
  2. Aditi, F.Y., Rahman, S.S., and Hossain, M.M. 2017. A study on the microbiological status of mineral drinking water. Open Microbiol J, 11(2), 31-44. DOI: 10.2174/1874285801711010031
  3. Ainayah, S., Lisdiyanti, P., Pertiwi, M., and Prasetyo, E.N. 2016. Biogrouting: produksi urease dari bakteri laut (Oceanobacillus sp.) pengendap karbonat. J Ilmu-Imu Hayati, 1(1), 9-18. DOI: 10.24002/biota.v1i1.707
  4. Akihary C.V., and Kolondam, B.J. 2020. Pemanfaatan Gen 16S Rrna sebagai perangkat identifikasi bakteri untuk penelitian-penelitian di Indonesia. J Ilmu Farmasi, 9(1), 16-22
  5. Alfiansah, Y.R., Hassenruck, C., Kunzmann, A., Taslihan, A., Harder, J., and Gardes, A. 2018. Bacterial abundance and community composition in pond water from shrimp aquaculture systems with different stoking densities. Front Microbiol, 9, 1-15. DOI: 10.3389/fmicb.2018.02457
  6. Ardiansyah., Amrullah., Jaya A.A., Dahlia., and Nurhayati. 2019. Isolation and identification of facultative mixotrophic ammonia oxidizing bacteria from Bone Regency, Indonesia. Int J Bioflux Soc, 12(1), 133-140
  7. Atencio, L.A., Grande, F.D., Young, G.O., Gavilan, R., Guzman, H,M., Schimitt, I., Meija L.C., and Guitierrez, M. 2018. Antimicrobial producing Pseudoalteromonas from the marine environment of Panama shows a high phylogenetic diversity and clonal structure. J Basic Microbiol, 58, 747-769. DOI: 10.1002/jobm.201800087
  8. Bowater, L. 2017. The Microbes Fight Back Antibiotic Resistance. The Royal Society of Chemistry. Cambridge. 148 p
  9. Chang, Z.W, Chiang, P.C, Cheng, W., and Chang, C.C. 2015. Impact of ammonia exposure on coagulation in white shrimp, Litopenaeus vannamei. Ecotoxicol Environ Saf, 118, 98-102. DOI: 10.1016/j.ecoenv.2015.04.019
  10. Constant, R.H.F. 2017. The Molecular Biology of Photorhabdus Bacteria. Springer Nature. Gewerbestrasse Cham. 40 p
  11. Dauda, A.B., and Olusegun, A.A. 2015. Evaluation of polypropylene and palm kernel shell as biofilter media for denitrification of fish culture wastewater. J Sci Tech, 5(1), 207-212
  12. Dziewit, L., Pyzik, A., Matlakowska, R., Baj, J., Szuplewska, M., and Bartosik, D. 2013. Characterization of Halomonas sp. ZM3 isolated from the Zelazny most post flotation waste reservoir with a special focus on its mobile DNA. BMC Microbiol, 13(59), 1-13. DOI: 10.1186/1471-2180-13-59
  13. Fujitani, H., Kumagi, A., Ushiki, N., Momiuchi, K., and Tsuneda, S. 2015. Selective isolation of ammonia-oxidizing bacteria from autotrophic nitrifying granules by applying cell-sorting and sub-culturing of microcolonies. Front Microbiol, 6, 1-10. DOI: 10.3389/fmicb.2015.01159
  14. Gallego, S., Vila, J., Nieto, J.M., Urdiain, M., Mora, R.R., and Grifoll, M. 2010. Breoghania corrubedonensis gen. nov. sp. nov., a novel Alphaproteobacterium isolated from a Galician beach (NW Spain) after the prestige fuel oil spill, and emended description of the family Cohaesibacteraceae and the species Cohaesibacter gelatinilyticus. Syst Appl Microbiol, 33(6), 1-6. DOI: 10.1016/j.syapm.2010.06.005
  15. Greenwood, D., Barer, M.R., and Irving, W.L. 2012. Medical Microbiology a Guide to Microbial Infections: Pathogenesis, Immunity, Laboratory. 18th ed. Elsevier. New York. 54 p
  16. He, C., Li, Z., Ding, J., Gao, W., Chi, W., and Ding, Y. 2019. Compelete genome sequnece of an N-Acyl homoserine lactone producer, Breoghania sp. strain L-A4, isolated from Rhizosphere of Phragmites australis in a coastal wetland. Microbiol Resour Announc, 8(5), 1-3. DOI: 10.1128/MRA.01539-18
  17. Ismail, S. 2019. Mikrobiologi & Parasitologi. Deepublish. Yogyakarta. 16 p
  18. Ivanova, E.P., Sawabe, T., Lysenko, A.M, Groshkova, N.M., Stevashev, V.I., Nicolau, D.V., Yumoto, N., Taguchi, T., Yoshikawa, S., Christen, R., and Mikhailov, V.V. 2007. Pseudoalteromonas ruthenica sp. nov., isolated from marine invertebrates. Int J Syst Evol Microbiol, 5(2), 235-240. DOI: 10.1099/00207713-52-1-235
  19. Jiang, L., Chen, X., Qin, M., Cheng, S., Wang, Y., and Zhou, W. 2019. On-board saline black water treatment by bioaugmentation original marine bacteria with Pseudoalteromonas sp. SCSE709-6 and the associated microbial community. Bioresour Technol, 273, 496–505. DOI: 10.1016/j.biortech.2018.11.043
  20. Joulak, I., Finore, I., Nicolaus, B., Leone, L., Moriello, A.S, Attia, H., Poli, A., and Azabou, S. 2019. Evaluation of the production of exopolysaccharides by newly isolated Halomonas strains from Tunisian hypersaline environments. Int J Biol Macromol, 138, 658-666. DOI: 10.1016/j.ijbiomac.2019.07.128
  21. Karthik, R,, Pushpam, A.C., Chelvan, Y., and Vanitha, M.C. 2016. Effeciency of probiotic and nitrifier bacterial consortium for the enhancement of Litopenaeus vannamei Aquaculture. Int J Vet Sci Res, 2(1), 1-6. DOI: 10.17352/ijvsr.000006
  22. Kathyayani, S.A., Poornima, M., Sukumaran, S., Nagavel, A., and Muralidhar, M. 2019. Effect of ammonia stress on immune variables of Pacific white shrimp Penaeus vannamei under varying levels of pH and susceptibility to white spot syndrome virus. Ecotoxicol Environ Saf, 184, 1-13. DOI: 10.1016/j.ecoenv.2019.109626
  23. Kaushal, J., Seema., Singh, G., Raina, A., and Arya, S.K. 2018. Catalase enzyme: application in bioremediation and food industry. Biocatal Agric Biotechnol, 16, 192-199. DOI: 10.1016/j.bcab.2018.07.035
  24. Khademian, M., and James, A.I. 2017. Escherichia coli cytochrome c peroxidase is a respiratory oxidase that enables the use of hydrogen peroxide as a terminal electron acceptor. Proc Natl Acad Sci USA, 114(3), 6922-6931. DOI: 10.1073/pnas.1701587114
  25. Khalifa, A., and Aldayel, M. 2019. Isolation and characterisation of the agarolytic bacterium Pseudoalteromonas ruthenica. Open Life Sci, 14, 588-594. DOI: 10.1515/biol-2019-0066
  26. Liu, F., Li, S., Yu, Y., Sun, M., Xiang, J., and Li, F. 2020. Effects of ammonia stress on the hemocytes of the Pacific white shrimp Litopenaeus vannamei. Chemospere, 239, 1-12. DOI: 10.1016/j.chemosphere.2019.124759
  27. Lu, Z., Guo, W., and Liu, C. 2018. Isolation, identification and characterization of novel Bacillus subtilis. J Vet Med Sci, 80(3), 427-433. DOI: 10.1292/jvms.16-0572
  28. Mahon, C.R, and Lehman, D.C. 2018. Textbook of Diagnostic Microbiology. Elsivier. St. Louis Missouri. 168 p
  29. Nandi, A., Yuan, L.J, Jana, C.K., and Das, N. 2019. Role of catalase in oxidative stress and age associated degenerative disease. Hindawi, 9, 1-19. DOI: 10.1155/2019/9613090
  30. Rodina, G.A. 1972. Methods in Aquatic Microbiology. University Park Press, Baltimore
  31. Sangnoi, Y., Thong, S., and Chankaew, S. 2017. Indigenous Halomonas spp., the potential nitrifying bacteria for saline ammonium waste water treatment. Pak J Biol Sci, 20(1), 52-58. DOI: 10.3923/pjbs.2017.52.58
  32. Silhavy, T.J., Daniel, K., and Suzanne, W. 2010. The Bacteria Cell Envelope. Cold Spring Harb Perspect Biol,2(5). DOI: 10.1101/cshperspect.a000414
  33. Stein, L.Y. 2011. Heterotrophic Nitrification and Nitrifier Denitrification. ASM Press. Wahington DC. 96 p
  34. Suantika, G., Lumbantoruan, G., Muhammad, H., Azizah, F.F.N., and Aditiawati, P. 2015. Performance of zero water discharge (ZWD) system with bacteria and microalgae Chaetoceros calcitrans components in super intensive white shrimp (Litopenaeus vannamei) culture. Aquaculture, 6(9), 1-6. DOI: 10.4172/2155-9546.1000359
  35. Untu, P., Rumengan, I.F.M., and Ginting, E.L. 2015. Identification of the co-exist microbial with ascidian Lissoclinum patella by using 16S rRNA gene sequences. J Pesisir dan Laut Tropis, 2(1), 23-35
  36. Waikhom, S., and George, R. 2018. Ammonia and nitrite toxicity to pacific white-leg shrimp Litopenaeus vannamei. Semant Sch. www.semanticscholar.org
  37. Walsh, P.S., Metzger, D.A., and Higuchi, R. 2018. Chelex 100 as a medium for simple extraction of DNA for PCR based tying from forensic material. Biotechnique, 54(3), 506-513. DOI: 10.2144/000114018
  38. Wang, T., Li, J., Zhang, L.H., Yu, Y., and Zhu, Y.M. 2017. Simultaneous heterotrophic nitrification and aerobic denitrification at high concentrations of NaCl and ammonia nitrogen by Halomonas bacteria. Water Sci Technol, 76(2), 386–395. DOI: 10.2166/wst.2017.214
  39. Wang, H., Wang, C., Tang, Y., Sun, B., Huang, J., and Song, X. 2018. Pseudoalteromonas probiotics as potential biocontrol agents improve the survival of Penaeus vannamei challenged with acute hepatopancreatic necrosis disease (AHPND) causing Vibrio parahemolyticus. Elsivier, 494, 30-36. DOI: 10.1016/j.aquaculture.2018.05.020
  40. Wang, M., Wu, Y., Zhu, J., Wang, C., Zhu, Y., and Tian, Q. 2018. The new developments made in the autotrophic and heterotrophic ammonia oxidation. IOP Conf Ser: Earth Environ Sci. DOI: 10.1088/1755-1315/178/1/012016
  41. Widanarni., Pranoto, S.H., and Sukenda. 2010. Selection of nitrification and denitrification bacteria with its application in culture medium of Pacific white shrimp (Litopenaeus vannamei). J Akuakultur Indonesia, 9(2), 184-195
  42. Yang, D.C., Blair, K.M, and Salama, N.R. 2016. Staying in shape: the impact of cell shape on bacterial survival in diverse environments. Microbiol Mol Biol Rev, 80(1), 187-203. DOI: 10.1128/MMBR.00031

Last update:

No citation recorded.

Last update: 2025-01-15 18:47:54

No citation recorded.