skip to main content

SELEKTIF BAKTERI YANG BERASOSIASI DENGAN KEMATIAN IKAN NILA (Oreochromus niloticus) DI KABUPATEN MAGELANG (Bacterial Selective Associated with Tilapia (Oreochromus niloticus) Mortality in Magelang Regency )

*Sarjito Sarjito scopus  -  Diponegoro University, Indonesia
Monica Nanda  -  Departemen Akuakultur, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro, Indonesia
Sulisyaningrum Sulisyaningrum  -  Dinas Peternakan dan Perikanan Kabupaten Magelang, Indonesia
Alfabetian Harjuno Condro Haditomo  -  Division of Marine Life Science, Graduate School of Fisheries Science, Hokkaido University, Japan
Desrina Desrina  -  Departemen Akuakultur, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro, Indonesia
Slamet Budi Prayitno  -  Departemen Akuakultur, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro, Indonesia

Citation Format:
Abstract

Kematian ikan nila  yang terjadi karena wabah penyakit  di Kabupaten Magelang mencapai kisaran 40 - 75 % pada bulan Juni – September 2019, mengakibatkan kerugian ekonomi bagi pembudidaya. Penelitian ini bertujuan untuk mengkaji gejala klinis, dan bakteri yang berasosiasi dengan kematian ikan nila tersebut.  Metode studi kasus konfirmatori dengan purposive sampling diaplikasikan. Duapuluh tiga ikan nila sakit panjang 8,87 ± 0,61cm diperoleh dari kolam pembesaran di Desa Keji, Kecamatan Muntilan dan Desa Pabelan, Kecamatan Mungkid, Kabupaten Magelang, sebagai sampel.  Isolasi bakteri dilakukan dengan metode gores pada media TSA dan GSP. Hasil isolasi dari keduapuluh tiga ikan sampel diperoleh 43 isolat bakteri murni. Berdasarkan karakter morfologi, media isolasi, bentuk dan warna dan karakter serta asal koloni, dari 44 isolat bakteri tersebut terseleksi 6 isolat (SN03, SN26,  SN48, SN51 , SN66 dan SN77)  untuk dilakukan uji selanjutnya yaitu uji postulat Koch dan karakterisasi secara biokimia dengan API KIT Vitek 2 Compact.  Gejala klinis yang terdeteksi pada ikan sampel dan ikan uji adalah pergerakan ikan pasif dan berenang di permukaan air, sirip geripis, luka pada tubuh, insang pucat, bercak merah pada tubuh, exopthalmia dan produksi lendir berlebih serta organ dalam yang memucat. Uji postulat Koch diperoleh bahwa keenam isolat bakteri menyebabkan ikan uji sakit dengan mortalitas berkisar antara 46,6 - 96,6%.  Hasil karakterisasi diperoleh bahwa keenam selektif bakteri yang berasosiasi dengan kematian ikan nila di kabupaten Magelang adalah Aeromonas hydrophila (SN 03), Streptococcus agalactiae (SN 26), Aeromonas sobria (SN 48), Pseudomonas putida (SN 51), Pseudomonas aeruginosa (SN 66) dan Aeromonas caviae (SN 77).

 

Mortality of Tilapia (Oreochromis niloticus) due to disease outbreaks in Magelang Regency reached 40 - 75% from June - November 2019, resulting in economic losses of farmer. This study aims were to determine the clinical symptoms and bacteria associated with tilapia mortality.  A confirmatory case study method with purposive sampling was applied. Twenty-three sick tilapia fish with a length of 8.87 ± 0.61 cm were obtained from grow out  pond in Keji Village, Muntilan District and Pabelan Village, Mungkid District, Magelang District, as samples. Bacteria isolation was carried out by scratch method on TSA and GSP media. The isolation from twenty-three fish samples resulted on 43 bacterial isolates.  Based on morphological characters, isolation media, shape and color as well as sources and character colony of 44 isolates, they were selected into 6 isolates (SN03, SN26, SN48, SN51, SN66 and SN77) for further testing, i.e: the Koch postulate test and biochemical characterization using Vitek 2 Compact. API KIT.  The clinical symptoms detected in the samples and test fish were fish that moved passively and swam on the surface of the water, wrinkled fins, wounds on the body, pale gills, red spots on the body, exopthalmia and excess mucus production and pale internal organs.  The Koch postulate test result showed that the six selected bacterial caused the test fish to be sick with a mortality ranging from 46.6-96.6%. The characterization of the selective bacteria associated with tilapia mortality in Magelang Regency, namely:  SN03, SN26, SN48, SN51, SN66 and SN77 were Aeromonas hydrophila (97%); Streptococcus agalactiae (98%), Aeromonas sobria (96%) Pseudomonas putida (96%); Pseudomonas aeruginosa (96%) and Aeromonas caviae (98%) respectively. 

Fulltext View|Download
Keywords: aeromonas; pseudomonas; streptococcus; kematian; ikan nila

Article Metrics:

  1. Abolghai, S. K., M. F. M. Salah., M. A. Aboubakar., M. Garbajb dan A. A. Moawad. 2016. Attenuated virulence of pigment-producing mutant of Aeromonas veronii bv. sobria in HeLa cells and Nile tilapia (Oreochromis niloticus). International Journal of Veterinary Science and Medicine, 1(1): 43-47. Doi: https://doi.org/10.1016/j.ijvsm.2013.05.004
  2. Agustina, S. S., Y. Mutalib dan A. A. Bakri. 2018. Uji Daya Antiparasit Konsentrasi Ekstrak Piper betle L. Terhadap Parasit Trichodina sp. Yang Menginfeksi Benih Ikan Nila (Oreochromis niloticus). Seminar Nasional Kelautan XIII FPIK Universitas Hang Tuah. Tahun 2018
  3. Aksoy, M. Y., R. Eljack., C. Schrimsher dan B. H. Beck. 2020. Use of Dietary Frass from Black Soldier Fly Larvae, Hermetia illucens, in Hybrid Tilapia (Nile x Mozambique, Oreochromis niloticus x O. mozambique) Diets Improves Growth and Resistance to Bacterial Disease. Aquaculture Reports, 17: 100373. https://doi.org/10.1016/j.aqrep.2020.100373
  4. Altinok, I., E. Capkin dan S. Kayis. 2008. Development of Multiplex PCR Assay for Simultaneous Detections of Five Bacterial Fish Patogens. Journal of Veterinary Microbiology. 131: 332-338. Doi: https://doi.org/10.1016/j.vetmic.2008.04.014
  5. Amal, M.N.A., Siti-Zahrah, A., Zulkifli, R., Misri, S., Ramley, B., Zamri-Saad, M., 2018. The effect of water temperature on the incidence of Streptococcus agalactiae infection in cage-cultured tilapia. In: Supranianondo, K. (Ed.), Abstracts of the International Seminar on Management Strategies on Animal Health and Production in Anticipation of Global Warming. Airlangga University Press, Surabaya, Indonesia, pp. 48. Doi: https://doi.org/10.1111/are.12180
  6. Amanu, S., T. Untari., M. H. Wibowo dan S. Artanto. 2015. Pengembangan Deteksi Aeromonas hydrophila pada Ikan Nila (Oreochromis niloticus) dengan Metoda Agar Presipitasi di Yogyakarta. Jurnal Sain Veteriner, 33(2): 216-222. Doi: https://doi.org/10.22146/jsv.17921
  7. Anandan, S., R. Gopi., N. K. D. Ragupathi., D. P. M. Sethuvel., P. Gunasekaran dan K. Walia. 2017. First Report of blaxa-181-Mediated Carbepenem Resistnce in Aeromonas caviae in Association with pKP3-A: Threat for Rapid Dissemination. Journal of Global Antimicrobial Resistance, 10: 310-314. Doi: https://doi.org/10.1016/j.jgar.2017.07.006
  8. Anupama, M. K. A. Kumar and J. N. L. Latha. 2015. Isolation and Characterization of Strontium Resistant Mutant of Neurospora crassa. Asian Journal of Biochemistry, 10(4): 156-164. Doi: https://doi.org/10.3923/ajb.2015.156.164
  9. Ashari, C., R. A. Tumbol dan M. E. F. Kolopita. 2014. Diagnosa Penyakit pada Ikan Nila (Oreochromis niloticus) yang Dibudidaya pada Jaring Tancap di Danau Tondano. Budidaya Perairan, (3): 24-30. Doi: https://doi.org/10.35800/bdp.2.3.2014.5700
  10. Ashraf, A. A. E. T., A. A. A. Maarouf, Nesma, and M. G. Ahmed. 2016. Detection of Virulence factors of Pseudomonas Species Isolatd From Fresh Water fish by PCR. Benha Veterinary Medical Journal, 30(1): 199-207.Doi: https://doi.org/10.21608/BVMJ.2016.31364
  11. Badan Pusat Statistik Kabupaten Magelang, 2021. Kabupaten Magelang Dalam Angka. Tahun 2021
  12. Badan Pusat Statistik Kabpaten Magelang. Baldissera, M. D., C. F. Souza., C. M. Verdi., P. H. Doleski., K. L.S
  13. Moreira., M. I. U. M. DaRocha., M. L. daVeiga., B. S. Vizzotto., R. C. V. Santos dan B. Baldissertto. 2018. Cholinergic and Adenosinergic Systems Exert a Pro-Inflammatory Profile in Peripheric and Splenic Lymphocytes of Rhamdia quelen Experimentally Infected by Aeromonas caviae Doi: .https://doi.org/10.1016/j.aquaculture.2017.09.049
  14. Brock, T. D. and Madigan, M.T. 1991. Biology of Microorganisms. 6th ed. Prentice hall, New Jersey
  15. Dar, G. H., S. A. Dard., A. N. Kamili dan M. Z. Chisthi. 2016. Detection and Characterization of Potentially Pathogenic Aeromonas Sobria Isolated from Fish Hypophthalmichthys molitrix (Cypriniformes: Cyprinidae). Microbial Pathogenesis, 91: 136-140. Doi: https://doi.org/10.1016/j.micpath.2015.10.017
  16. Doan, H. V. S. H. Hoseinifar., K. Sringarm., S. Jaturasitha., B. Yuangsoi., M. A. O. Dawood., M. A. Esteban., E. Ring dan C. Faggio. 2019. Effects of Assam Tea Extract on Growth, Skin Mucus, Serum Immunity and Disease Resistance of Nile Tilapia (Oreochromis niloticus) Against Streptococcus agalactiae. Doi: https://doi.org/10.1016/j.fsi.2019.07.077
  17. Dong. H. T., V. V. Nguyen, H. D. Le, P. Sangsuriya, S. Jitrakorn, V. Saksmerprome, S. Senapin and C. Rodkhum. 2015. Naturally Concurrent Infections of Bacterial and Viral Pathogens in Disease Outbreaks in Cultured Nile tilapia (Oreochromis niloticus) farms. Aquaculture, 448: 427-435. Doi: https://doi.org/10.1016/j.aquaculture.2015.06.027
  18. Eissa, M. N E., E. N. A. El-Ghiet, A. A. Shaheen and A. Abbass. 2010. Characterization of Pseudomonas Species Isolated from Tilapia "Oreochromis niloticus" in Qaroun and Wadi-El-Rayan Lakes, Egypt. Global Veterinaria, 5(2): 116-121. Doi: https://doi.org/10.13140/2.1.5002.4961
  19. Elbahnaswya, S. and E. E. Gehad. 2020. Differential Gene Expression And Immune Response Of Nile Tilapia (Oreochromis Niloticus) Challenged Intraperitoneally with Photobacterium damselae and Aeromonas hydrophila Demonstrating Immunosuppression. Aquaculture 526, 735364. Doi: https://doi.org/10.1016/j.aquaculture.2020.735364
  20. Eugenin. F. L., R. Beaz-Hidalgo, M.J. Figueras. 2016. Evaluation of Different Conditions and Culture Media for the Recovery of Aeromonas spp. from Water and Shellfish samples. Journal Application Microbiology, 121:883–891. Doi: https://doi.org/10.1111/jam.13210
  21. Fa, W. Q. S dan L.L. Yaoma. 2015. Diseases resistance of Nile tilapia (Oreochromis niloticus), Blue Tilapia (Oreochromis aureus) and their hybrid (female Nile tilapia×male blue tilapia) to Aeromonas sobria. Aquaculture. 229(4): 79-87. Doi: https://doi.org/10.1016/S0044-8486(03)00357-0
  22. Giri, S. S., J. W. Jun., S. Yun., H. J. Kim., S. G. Kim., s. W. Kim., K. J. Woo., S. J. Han., W. T. Oh., J. Kwon., V. Sukumaran dan S. C. Park. 2020. Effects of Dietary Heat-Killed Pseudomonas aeruginosa Strain VSG2 on Immune Functions, Antioxidant Efficacy and Disease Resistance in Cyprinus carpio. Aquaculture, 514: 734489. Doi: https://doi.org/10.1016/j.aquaculture.2019.734489
  23. Han, Z., Zhou, Y., Zhang, X., Yan, J., Xiao, J., Luo, Y. & Zhong, H. 2020. Ghrelin Modulates the Immune Response and Increases Resistance to Aeromonas hydrophila Infection in Hybrid Tilapia. Fish & shellfish immunology. 98: 100-108. Doi: https://doi.org/10.1016/j.fsi.2020.01.006
  24. Hardi, E.H., I.W. Kusuma, W. Sueinarti, G. Saptiani, Sumoharjo dan A.M. Lusiastuti. 2017. Utilization of Several Herbal Plant Extracts on Nile Tilapia in Preventing Aeromonas hydrophila and Pseudomonas sp. Bacterial Infection. Nusantara Bioscience. 9(2): 220-228. Doi https://doi.org/10.13057/nusbiosci/n090219
  25. Hardi, E.H., R. A. Nugroho, I. W. Kusuma, W. Suwinarti, A. Sudaryono, dan R. Rostika. 2019. Borneo herbal plant extracts as a natural medication for prophylaxis and treatment of Aeromonas hydrophila and Pseudomonas fluorescens infection in tilapia (Oreochromis niloticus) [version 2; peer review: 2 approved, 1 approved with reservations]. F1000 Research. 7:1847. 1-18. Doi: https://doi.org/10.12688/f1000research.16902.2
  26. Hardi, E.H., R.A. Nugroho, G. Saptiani, R. Sabrinah, M. Agriandini and M. Mawardi., 2018,. Identification of Potentially Pathogenic Bacteria from Tilapia (Oreochromis niloticus) and Channel Catfish (Clarias batracus) Culture in Samarinda, East Kalimantan, Indonesia. Biodiversitas. 19(2): 480-488. Doi: https://doi.org/10.13057/biodiv/d190215
  27. Kayansamruaj, P. P., N. Hirono dan I. Rodkhum. 2014. Increasing of Temperature Induces Pathogenicity of Streptococcus agalactiae and the Up-Regulation on Inflammatory Related Gens in Infected Nile Tilapia (Oreochromis niloticusi). Vet Microbio,172: 586-594. https://doi.org/10.1016/j.vetmic.2014.04.013
  28. Kimura, S. I., A. Gomyo., J. Hayakawa,Y. Akahoshi., N. Harada., T. Ugai., Y. Komiya., K. Kameda. H. Wada. Y. Ishihara., K. Kawamura. K. Sakamoto. M. Sato K. Terasako. 2017. Clinical characteristics and predictive factors for mortality in coryneform bacteria bloodstream infection in hematological patients. Clinical characteristics and predictive factors for mortality in coryneform bacteria bloodstream infection in hematological patients. 143-153. Doi: https://doi.org/10.1016/j.jiac.2016.11.007
  29. Kuebutornye, F. K. A., Z. Wang., Y. Lu., E. D. Abarike., M. E. Sakyi., Y. Li., C. X. Xie dan V. Hlordzi. 2020. Effects of Three Host Asociated Bacillus Species on Mucosal Immunity and Gut Health of Nile Tilapia, Oreochromis niloticus and Its Resistance Against Aeromonas hydrophila Infection. Fish and Shellfish Imunology, 97: 83-95. Doi: https://doi.org/10.1016/j.fsi.2019.12.046
  30. Lee, P. T., C. M. Wen., F. H. Nan., H. Y. Yeh dan M. C. Lee. 2020. Immunostimulatory Effects of Sarcodia suiae Water Extracts on Nile Tilapia, Oreochromis niloticus, and Its Resistance Against Streptococcus agalactiae. Fish and Shellfish Immunology, 103: 159-168. Doi: https://doi.org/10.1016/j.fsi.2020.05.017
  31. López J. R, J.I. Navas, N. Thanantong, R. de la Herran, O.A.F. Sparagano. 2012. Simultaneous identification of five marine fish pathogens belonging to the genera Tenacibaculum, Vibrio, Photobacterium and Pseudomonas by Reverse Line Blot Hybridization, Aquaculture 324–325: 33–38. Doi: https://doi.org/10.1016/j.aquaculture.2011.10.043
  32. Manrique, W. G., M. A. P. Figueiredo, I. Charlie-Silva, M. A. A. Belo and C. C. Dib. 2019. Spleen Melanomacrophage Centers Response of Nile tilapia during Aeromanas hydrophila and Mycobacterium marinum infections. Journal Pre-proof, 95: 514-518. Doi: https://doi.org/10.1016/j.fsi.2019.10.071
  33. Martins, G. B., F. Tarouco., C. E. Rosa dan R. B. Robaldo. 2017. The Utilization of Sodium Bicarbonate, Calcium Carbonate or Hydroxide in Biofloc System: Water Quality, Growth Performance and Oxidative Stress of Nile Tilapia (Oreochromis niloticus). Aquaculture, 468: 10-17. Doi: https://doi.org/10.1016/j.aquaculture.2016.09.046
  34. Monir, W., M. A. A. Rahman., S. El-Din. Hassan., E. Mansour dan S. M. M. Awad. 2020. Pomegraate Peel and Moringa-based Diets Enhanced Biochemical and Immune Parameters of Nile Tilapia Against Bacterial Infecton by Aromonas hydrophila. Microbial Pathogenesis, 145: 104202. Doi: https://doi.org/10.1016/j.micpath.2020.104202
  35. Muslikha, S. Pujiyanto, S.N. Jannah dan H. Novita. 2016. Isolasi, Karakterisasi Aeromonas hydrophila dan Deteksi Gen Penyebab Penyakit Motile Aeromonas Septicemia (MAS) dengan 16S rRNA dan Aerolysin pada Ikan Lele (Clarias sp.). Jurnal Biologi. 5(4): 1-7
  36. Mzula, A., P. N. Wambura., R. H.Mdgela., G. M. Shirima. 2019. Phenotypic and Molecular Deection of Aeromonas Infection in Farmed Nile Tilapia in Southern Highland and Northern Tanzania. Heliyon, 5: 1-8. https://doi.org/10.1016/j.heliyon.2019.e02220
  37. Naby, A. S. A. E., A. El. R. A. Khattaby., F. Samir., S. M. M. Awad., M. A. Tawwab. 2019. Stimulatory Effect of Dietary Butyrate on Growth, Immune Response and Resistance of Nile Tilapia, Oreochromis niloticus Against Aeromonas hydrophila Infection. Animal Feed Science and Technology, 254: 114212. Doi : https://doi.org/10.1016/j.anifeedsci.2019.114212
  38. Peepim, T., H. T. Dong., S. Senapin., P. Khunrae dan T. Rattanarojpong. 2016. Epr3 is a Conserved Immunogenic Protein Among Aeromonas Spesies and Able to Induce Antibody Response in Nile Tilapia. Aquaculture, 464: 399-409. Doi: https://doi.org/10.1016/j.aquaculture.2016.07.022
  39. Piasamboon, P., K. Thanasaksiri., A. Muakami., K. Fukuda., R. Takano., S. Jantrakajorn dan J. Wongtavatchai. 2020. Streptococcis in Freshwater Farmed Seabass Lates calcarifer and its Virulence in Nile Tilapia Oreochromis niloticus. Aquaculture, 523: 735189. https://doi.org/10.1016/j.aquaculture.2020.735189
  40. Pincus, S. H. 1978. Production of Eosinophil-rich Guinea Pig Peritoneal Exudates. Blood. 52(1): 127-134. Doi: 10.1182/BLOOD.V52.1.127.BLOODJOURNAL521127
  41. Sarjito. 2010. Aplikasi Biomolekuler untuk Deteksi Agensia Penyebab Vibriosis pada Ikan Kerapu dan Potensi Bakteri Sponge Sebagai Anti Vibriosis. [Disertasi]. Program Pasca Sarjana, Universitas Diponegoro, Semarang
  42. Sarjito, O. K. Radjasa, S. Hutabarat, and S. B. Prayitno. 2007. Causitive Agent Vibriosis dari Ikan Kerapu Bebek (Cromileptis altivelis) Bermulut Merah: 1. Patogenitas pada Ikan Kerapu Macan (Epinephelus fuscoguttatus). Indonesian Journal of Marine Sciences, 12(3): 173-180. Doi: https://doi.org/10.14710/ik.ijms.12.3.173-180
  43. Sarjito, Radjasa, O.K., Haditomo, A.H.C., Prayitno , S.B., 2014. Insidensi Bakteri Genus Vibrio Pada Lele Dumbo (Clarias Gariepinus) Dari Sentral Produksi Provinsi Jawa Tengah. Proseding Semnaskan FPIK Tahun 2013
  44. Sarjito., A. H. C. Haditomo., R. W. Ariyati., A. Sabdaningsih., Desrina and S. B. Prayitno. 2019. Screening of potential isolate candidates probiotic against Aeromonas hydrophila from Boyolali, Indonesia. IOP Conf. Series: Journal of Physics: Conf. Series 1217: 1-7. Doi: https://doi.org/10.1088/1742-6596/1217/1/012147
  45. Sirimanapong, W., K. D. Thompson., A. P. Shinn., A. Adams dan B. Withyachumnamkul. 2018. Streptococcus agalactiae Infection Kills Red Tilapia With Chronic Francisella Noatunensis Infection More Rapidly than the Fish Without The Infection. Fish and Shellfish Immunology. 81:221-232. Doi: https://doi.org/10.1016/j.fsi.2018.07.022
  46. SNI (Standart Nasional Indonesia). 2009. Induk ikan Nila Hitam. Badan Standarisasi Nasional. Jakarta. SNI 6139 – 2009
  47. SNI (Standart Nasional Indonesia). 2009. Produksi Ikan Nila (Oreochromis niloticus Bleeker) Kelas Pembesaran di Kolam Air Tenang. Badan Standardisasi Nasional. Jakarta. SNI 7550 – 2009
  48. Souza, C. F., M. D. Baldissera., S. N. Descovi., C. C. Zeppenfeld., C. M. Verdi., R. C. V. Santos., A. S. da Silva dan B. Baldisserotto. 2019. Grape Pomace Flour Alleviates Pseudomonas aeruginosa-Induced Hepatic Oxidative Stress in Grass carp by Improving Antioxidant Defense. Microbial Pathogenesis, 129: 271-276. https://doi.org/10.1016/j.micpath.2019.02.024
  49. Thomas, J., S. Thanigaivel., S. Vijayakumar., K. Acharya., D. Shinge., T. S. J. seelan., A. Mukherjee an N. Chandrasekaran. 2014. Pathogenecity of Pseudomonas aeruginosa in Oreochromi mossambicus and Treatment Using Lime Oil Nanoemulsion. Colloids and Surfaces B: Biointerfaces, 116: 372-377. Doi: https://doi.org/10.1016/j.colsurfb.2014.01.019
  50. Thomas. J., N. Madan, K.S.N. Nambi, S. Abdul Majeed, A. Nazeer Basha, A.S. Sahul Hameed, 2013. Studies on ulcerative disease caused by Aeromonas caviae-like bacterium in Indian catfish, Clarias batrachus (Linn). 2013. 146–150. Aquaculture 376-379. Doi: https://doi.org/10.1016/j.aquaculture.2012.11.015
  51. Verma, V. K., K. V. Rani., S. R. Kumar dan O. Prakash. 2018. Leucaena Leucocephala Pod Seed Protein as an Alternate to Animal Protein in Fish Feed and Evaluation of its Role to Fight Against Infection Caused by Vibrio harveyi and Pseudomonas aeruginosa. Fish and Shellfish Immunology, 1-29. Doi: https://doi.org/10.1016/j.fsi.2018.03.01
  52. Wang, Y., H. Y. He., H. H. Li., W. W. Lu., T. T. Guo dan J. Kong. 2017. The Global Regulator CodY Responds to Oxidative Stess by The Regulation of Glutathione Biosynthesis in Streptococcus thermophiles. Journal of Dairy Science. 100(11): 8768-8775. Doi: https://doi.org/10.3168/jds.2017-13007
  53. Wang, F., X. R. Xian., W. L. Guo., Z. H. Zhong., S. F. Wang., Y. Cai., Y. Sun., X. F. Chen., Y. Q. Wang and Y. C. Zhou. 2019. Baicalin Attenuates Streptococcus agalactiae Virulance and Protects Tilapia (Oreochromis niloticus). Aquacultue 516, 734645. Doi: https://doi.org/10.1016/j.aquaculture.2019.734645
  54. Zahran, E., E. Risha., S. Elbahnaswy., S. Mahgoub., AA. H. A. El-Moaty. 2019. Tilapia Piscidin (TP4) Enhances Immune Response, Antioxidant Activity, Intestinal Health and Protection Against Streptococcus iniae Infection in Nile Tilapia. Aquaculture 513, 734451. https://doi.org/10.1016/j.aquaculture.2019.734451
  55. Zamri-Saad, M., Amal, M.N.A., Siti-Zahrah, A., Zulkafli, A.R., 2014. Control and prevention of streptococcosis in cultured tilapia in Malaysia: a review. Pertanika J. Trop. Agri. Sci. 37, 389–410
  56. Zhang, D., Gao, Y., Li, Q., Ke, X., Liu, Z., Lu, M., and Shi, C. 2020. An Effective Live Attenuated Vaccine Against Streptococcus Agalactiae Infection in Farmed Nile tilapia (Oreochromis niloticus). Fish & shellfish immunology. 98: 853-859. Doi: https://doi.org/10.1016/j.fsi.2019.11.044

Last update:

No citation recorded.

Last update: 2025-01-15 13:45:54

No citation recorded.