skip to main content

MOLECULAR IDENTIFICATION OF DENITRIFYING BACTERIA TO EVALUATE THE SENSITIVITY OF SELECTIVE MEDIA

Dianti Eka Yurnaningsih  -  Aquatic Resources Management Study Program, Department of Aquatic Resources, Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. H. Soedarto, SH., Tembalang, Semarang, 50725, Indonesia, Indonesia
*Aninditia Sabdaningsih  -  Aquatic Resources Management Study Program, Department of Aquatic Resources, Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. H. Soedarto, SH., Tembalang, Semarang, 50725, Indonesia, Indonesia
Niniek Widyorini  -  Aquatic Resources Management Study Program, Department of Aquatic Resources, Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. H. Soedarto, SH., Tembalang, Semarang, 50725, Indonesia, Indonesia

Citation Format:
Abstract
Eutrophication is the main problem in Rawa Pening that occurs due to the high supply of organic material from various sources. The high level of nitrate in the water can be reduced through denitrification mechanism using some bacteria such as Pseudomonas group. This bacteria group was often isolated using Glutamate Starch Phenol (GSP) selective media. This study aims to identify the species from the floating net cage of Rawa Pening that was suspected as Pseudomonas group based on colony morphology in GSP through molecular approach, build the phylogenetic tree, and analyze the genetic distance. The research was conducted from January to May 2020. The molecular approach was carried out using the Polymerase Chain Reaction (PCR) method with 16S rRNA gene amplification. The results of BLAST analysis showed that isolate D1 which obtained from water samples in the Rawa Pening floating net cage area had 99.23% homology with Acinetobacter junii strain tu13. The partial sequence of DNA was already deposited to GenBank with accession number LC603787. The phylogenetic tree construction was built using Neighbor-Joining analysis on MEGA X software. The results showed that isolate D1 was related to Acinetobacter junii strain tu13 with 0.006 genetic distance while Pseudomonas fluorescens with 0.144 genetic distance. The result revealed that isolate D1 closely related to A. junii rather than Pseudomonas group. This study indicated that GSP medium has a sensitivity range at the Order level, namely Pseudomonadales.
Fulltext View|Download
Keywords: Acinetobacter junii; denitrifying bacteria; GSP medium; Pseudomonas; Rawa Pening
Funding: PNPB Faculty of Fisheries and Marine Science No. 017/UN7.5.10.1/PP/2020 as well as RPI grant from LPPM Undip No. 233-16/UN7.6.1/PP/2020.

Article Metrics:

  1. Abdullah, A., Nurilmala, M., Sari, A. S., & Jacoeb, A. M. (2018). Mini-COI Barcodes Sebagai Penanda Molekuler untuk Ketertelusuran Label Pangan Berbagai Produk Olahan Ikan Sidat. JPHPI, 21 (2), 377 – 384. doi: 10.17844/jphpi.v21i2.23507
  2. Almeida, J. S., Julio, S. M., Reis, M. A. M., & Carrondo, J. T. (1995). Nitrite Inhibition of Denitrification by Pseudomonas fluorescens. Biotechnology and Bioengineering, 46, 194-201. doi: 10.1002/bit.260460303
  3. Asril, M. & Lisafitri, Y. (2020). Isolation of Genus Pseudomonas, a Phosphate Solubilizing Bacteria from the Acid Soil of Institut Teknologi Sumatera’s Former Rubber Plantation Site. Jurnal Teknologi Lingkungan, 21 (1), 40 – 48. doi: 10.29122/jtl.v21i1.3743
  4. Bartram J et al., eds. (2003). Heterotrophic plate counts and drinking-water safety: the significance of HPCs for water quality and human health. WHO Emerging Issues in Water and Infectious Disease Series. London, IWA Publishing
  5. Chen, J., Banks, D., Jarret, R. L., Chang, C. J., & Smith B. J. (2000). Use of 16S rDNA Sequences as Signature Characters to Identify Xylella fastidiosa. Current Microbiology, 40(1), 29-33. doi: 10.1007/s002849910006
  6. Chen, Z., Jiang, Y., Chang, Z., Wang, J., Song, X., Huang, Z., Chen, S., & Li, J. (2020). Denitrification Characteristics and pathways of a Facultative Anaerobic Denitrifying Strain, Pseudomonas denitrificans G1. Journal of Bioscience and Bioengineering, 129(6), 715–722. doi: 10.1016/j.jbiosc.2019.12.011
  7. Comorera, L. S., Blanch, A. R., Vilaro, C., Galofre, B., & Aljaro, C. G. (2016). Pseudomonas-Related Populations Associated with Reverse Osmosis in Drinking Water Treatment. Journal of Environmental Management, 182, 335–341. doi: 10.1016/j.jenvman.2016.07.089
  8. Corry, J. E.L., Curtis, G. D. W., & Baird, R. M. (2012). Handbook of Culture Media for Food and Water Microbiology. The Royal Society of Chemistry: Cambridge. 986 page
  9. Fahlevi, M. R., Bakti, D., Sitepu, S. F., & Prasetyo, A. E. (2018). Karakterisasi Molekuler Elaeidobius kamerunicus Faust. (Coleoptera: Curculionidae) Asal Sumatera Utara Menggunakan Metode Amplified Fragment Length Polymorphism (AFLP). Jurnal Agroekoteknologi, 6 (2), 259–270
  10. Нussain, T. & Ahmad, K. A. (2018). A Combination of Rapid and Easy Assays of Biosurfactant Producing Bacterial Strain Isolated from Automobiles Repairing Workshop in Aligarh. Voronezh State University of Engineering Technologies Journal, 80 (3(77)). doi: 10.20914/2310-1202-2018-3-153-163
  11. Kesserű, P., Kiss, I., Bihari, Z., & Polyák B. (2003). Biological Denitrification in a Continuous-Flow Pilot Bioreactor Containing Immobilized Pseudomonas butanovora Cells. Bioresource Technology, 87 (1), 75–80. doi: 10.1016/S0960-8524(02)00209-2
  12. Liu W., Zang, Q., & Liu, G. (2010). Eutrophication Related with Geographic Location, Lake Morphology and Climate Change in China. Hydrobiologia, 644, 289–299. doi: 10.1007/s10750-010-0151-9
  13. Maleki, M. R., Kafil, H. S., Harzandi, N., & Moaddab, S. R. (2017). Identification of Nontuberculous Mycobacteria Isolated from Hospital Water by Sequence Analysis of the HSP65 and 16S rRNA Genes. Journal of Water and Health, 15(5), 766–774. doi: 10.2166/wh.2017.046
  14. Malick, R. C., Bera, A. K., Chowdhury, H., Bhattacharya, M., Abdulla, T., Swain, H. S., Baitha, R., Kumar, V., & Das, B. K. (2020). Identification and pathogenicity study of emerging fish pathogens Acinetobacter junii and Acinetobacter pittii recovered from a disease outbreak in Labeo catla (Hamilton, 1822) and Hypophthalmichthys molitrix (Valenciennes, 1844) of freshwater wetland in West Bengal, India. Aquaculture Research, 00, 1-11. doi: doi.org/10.1111/are.14584
  15. Mardiana, N. A., Murniasih, T., Rukmi, W. D., & Kusnadi, J. (2020). Potensi Bakteri Laut sebagai Sumber Antibiotik Baru Penghambat Staphylococcus aureus. Jurnal Teknologi Pertanian, 21 (1), 49–56. doi: 10.21776/ub.jtp.2020.021.01.6
  16. Nurhasanah, S., Fachrial, E., & Lister, N. E. (2020). Isolation, Characterization, and Molecular Identification of Indigenous Bacteria from Fermented Almonds (Prunus dulcis). Microbiology Research Journal International, 30(8), 15–20. doi: 10.9734/mrji/2020/v30i830247
  17. Park, H. I., Kim, J. S., Kim, D. K., Choi, Y. J., & Pak, D. (2006). Nitrate-Reducing Bacterial Community in a Biofilm-Electrode Reactor. Enzyme and Microbial Technology, 39 (3), 453–458. doi: 10.1016/j.enzmictec.2005.11.028
  18. Pertiwi, M. P., Praseptin, P. K. H., Werdani, I. D., Listyorini, D., & Prabaningtyas, S. (2018). Identification and Phylogenetic Study of Bioluminescent Bacteria from Squid (Loligo duvaucelii) based on 16S rRNA Gene, AIP Conference Proceedings, 2002(020038), 1–7. doi: 10.1063/1.5050134
  19. Sabdaningsih, A., Cristianawati, O., Sibero, M. T., Nuryadi, H., Radjasa, O. K., Sabdono, A. & Trianto, A. (2017). Screening Antibacterial Agent from Crude Extract of Marine- Derived Fungi Associated with Soft Corals against MDR- Staphylococcus haemolyticus. IOP Conf. Series: Earth and Environmental Science. 55, 1-8. doi: 10.1088/1755-1315/55/1/012028
  20. Sabdaningsih, A. Liu, Y., Mettal, U., Heep, J., Riyanti., Wang, L., Cristianawati, O., Nuryadi, N., Sibero, M. T., Marner, M., Radjasa, O. K., Sabdono, A., Trianto, A., & Schaeberle, T. F. (2020). A New Citrinin Derivative from the Indonesian Marine Sponge-Associated Fungus Penicillium citrinum. Marine Drugs, 18, 227-239. doi: 10.3390/md18040227
  21. Soeprobowati, T. R. (2015). Integrated Lake Basin Management for Save Indonesian Lake Movement. Procedia Environmental Sciences, 23, 368–374. doi: 10.1016/j.proenv.2015.01.053
  22. Sulastri, Henny, C., & Handoko, U. (2016). Environmental Condition and Trophic Status of Lake Rawa Pening in Central Java. Oseanologi dan Limnologi di Indonesia, 1 (3), 23–38. doi: 10.14203/oldi.2016.v1i3.20
  23. Tatangindatu, F., Kalesaran, O., & Rompas, R. (2013). Studi Parameter Fisika Kimia Air pada Areal Budidaya Ikan di Danau Tondano, Desa Paleloan, Kabupaten Minahasa. Budidaya Perairan, 1 (2), 8–19. doi: 10.35800/bdp.1.2.2013.1911
  24. Triyatmo, B., Rustadi, & Isnansetyo, A.. (2020). Effects of Probiotic Dosage on Water Quality, Total Count of Aeromonas spp. and Pseudomonas spp. in Eel Anguilla bicolor Cultivation. E3S Web of Conferences, 147, 1–4. doi: 10.1051/e3sconf/202014701008
  25. Walsh, P. S., Metzger, D. A., & Higuchi, R. (2013). Chelex 100 as a Medium for Simple Extraction of DNA for PCR-Based Typing from Forensic Material. BioTechniques, 54(3), 506-513. doi: 10.2144/000114018
  26. Xie, F., Thiri, M., & Wang, H. (2020). Simultaneous Heterotrophic Nitrification and Aerobic Denitrification by a Novel Isolated Pseudomonas mendocina X49. Bioresource Technology, 1–27. doi: 10.1016/j.biortech.2020.124198
  27. Zein, M. & Prawiradilaga, D. M. (2013). DNA Barcode Fauna Indonesia. Kencana Prenadamedia Group : pp. 180
  28. Zhang, R. C., Chen, C., Wang, W., Shao, B., Xu, X. J., Zhou, X., Lee, D. J., & Ren, N. Q. (2020). The Stimulating Metabolic Mechanisms Response to Sulfide and Oxygen in Typical Heterotrophic Sulfide-Oxidizing Nitrate-Reducing Bacteria Pseudomonas C27. Bioresource Technology, 309, 1– 9. doi: 10.1016/j.biortech.2020.123451
  29. Zhang, Y., Wei, D., Morrison, L., Ge, Z., Zhan, X., & Li, R. (2019). Nutrient Removal through Pyrrhotite Autotrophic Denitrification: Implications for Eutrophication Control. Science of the Total Environment, 662, 287–296. doi: 10.1016/j.scitotenvi.2019.01.230
  30. Zheng, M., Li, C., Liu, S., Gui, M., & Ni, J. (2016). Potential Application of Aerobic Denitrifying Bacterium Pseudomonas aeruginosa PCN-2 in Nitrogen Oxides (NOx) Removal from Flue Gas. Journal of Hazardous Materials, 318, 571–578. doi: 10.1016/j.jhazmat.2016.07.047

Last update:

No citation recorded.

Last update: 2024-04-20 01:29:28

No citation recorded.