skip to main content

EFFECT OF ENVIRONMENTAL PARAMETERS ON THE VALUE OF HUE SAND DOLLARS IN KARIMUNJAWA ISLANDS CENTRAL JAVA INDONESIA

*Suryanti Suryanti  -  Department of Aquatic Resources, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Indonesia
Sutrisno Anggoro  -  Department of Aquatic Resources, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Indonesia
Churun A’in  -  Department of Aquatic Resources, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Indonesia
Wiwiet Teguh Taufani  -  Department of Aquatic Resources, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Indonesia

Citation Format:
Abstract
Sand dollar is one among many echinoid groups with unique habitat preferences in the coastal waters. The hue (color) of sand dollar is one of the unique aspects, but currently, the information is still very limited. The purpose of this study is to investigate the value of hue sand dollar in Karimunjawa waters and investigate the condition of environmental parameters in Karimunjawa waters so that it can further analyze the environmental effect on hue sand dollar levels descriptively. The research was carried out in Karimunjawa islands, including Karimunjawa, Menjangan Kecil, and Cemara Kecil islands in June – July 2019. Sampling was carried out using line-transect with the transect length of 25 m. Four sampling stations were occupied at each island. The observation parameters were including sea surface temperature, pH, DO, organic matter, and seafloor coverage such as coral, rubble, and sand. Hue value was analyzed with Haphazard sampling method, using Adobe Photoshop. Data analysis was conducted with ANOVA and regression. The result showed there were variations in environmental parameters, including the significant difference of pH, organic matter, and rubble coverage. The hue of sand dollar has also differed significantly among islands.  Regression analysis showed significant effect from pH, coral coverage and rubble coverage on the hue value of sand dollar with the formula: ln (Y) = 20.867– 2.364(X1) + 6.608e-5(X2)+ 1.271e-4(X3); while the determination coefficient was 0.849 (p = 0.001). The effect of environmental parameters on the hue value of sand dollar might occur indirectly, but due to the change of pigment composition and concentration.
Fulltext View|Download

Article Metrics:

  1. ADB. Sri Lanka. 2017.Jaffna And Kilinochchi Water Supply Project , Additional Financing - Seawater Desalination Plant and Potable Water Conveyance System. Colombo, Sri Lanka
  2. Ageenko N V, Kiselev K V, Odintsova NA. 2011. Expression of pigment cell-specific genes in the ontogenesis of the sea urchin Strongylocentrotus intermedius. Evidence-Based Complement Altern Med. 2011:730356. doi: 10.1155/2011/730356
  3. Ageenko N V, Kiselev K V, Dmitrenok PS, Odintsova NA. 2014. Pigment cell differentiation in sea urchin blastula-derived primary cell cultures. Mar Drugs. 12(7):3874-3891. doi: 10.3390/md12073874
  4. Allen JD, Pechenik JA. 2010. Understanding the effects of low salinity on fertilization success and early development in the sand dollar Echinarachnius parma. Biol Bull. 218(2):189-199. doi: 10.1086/BBLv218n2p189
  5. Allen J, Schrage K, Foo S, Watson S-A, Byrne M. 2017. The effects of salinity and pH on fertilization, early development, and hatching in the Crown-of-Thorns Seastar. Diversity.;9(1):13. doi: 10.3390/d9010013
  6. Blatama D, Moro HKEP, Apriyani M. 2016Jejak sisa kehidupan masa lalu (Trace Fossile) biota laut di daerah pegunungan Halmahera Tengah, Provinsi Maluku Utara. In: Prosiding Symbion. 417-428
  7. Brasseur L, Hennebert E, Fievez L, et al. 2017. The roles of spinochromes in four shallow water tropical sea urchins and their potential as bioactive pharmacological agents. Mar Drugs. 15(6):179. doi: 10.3390/md15060179
  8. Camargo-Sosa K, Colanesi S, Muller J, et al. 2018. Endothelin receptor Aa regulates proliferation and differentiation of Erb-dependant pigment progenitors in Zebrafish. BioRxiv. 308221. doi: 10.1101/308221
  9. Challener RC, Miller MF, Furbish DJ, McClintock J. 2009. Evaluation of sand grain crushing in the sand dollar Mellita tenuis (Echinoidea: Echinodermata). Aquat Biol. 7:261-268. doi: 10.3354/ab00199
  10. Christian JR, Grant CGJ, Meade JD, Noble LD. 2010. Habitat Requirements and Life History Characteristics of Selected Marine Invertebrate Species Occurring in the Newfoundland and Labrador Region.
  11. Coppard SE, Zigler KS, Lessios HA. 2013. Phylogeography of the sand dollar genus Mellita: Cryptic speciation along the coasts of the Americas. Mol Phylogenet Evol. 69(3):1033-1042. doi: 10.1016/j.ympev.2013.05.028
  12. Devi PS, Saravanakumar M, Mohandas S. 2012. The effects of temperature and pH on stability of anthocyanins from red sorghum (Sorghum bicolor) bran. African J Food Sci. 6(24):567-573. doi: 10.5897/AJFS12.052
  13. DÍaz F, Re AD, Galindo-Sanchez CE, et al. 2017. Preferred temperature, critical thermal maximum, and metabolic response of the Black Sea Urchin Arbacia stellata (Blainville, 1825; Gmelin, 1791). J Shellfish Res. 36(1):219-225. doi: 10.2983/035.036.0124
  14. Drozdov AL, Artyukov AA, Elkin YN. 2017. Pigments in egg cells and epidermis of sand dollar Scaphechinus mirabilis. Russ J Dev Biol. 48(4):257-262. doi: 10.1134/S106236041704004X
  15. Guilherme PDB, Brustolin MC, Bueno MDL. 2015. Distribution patterns of ectosymbiont crabs and their sand dollar hosts in a subtropical estuarine sandflat. Rev Biol Trop. 63(Suppl. 2):209-220
  16. Hafsaridewi R, Sulistiono, Fahrudin A, Sutrisno D, Koeshendrajana S. 2018. Resource management in the Karimunjawa Islands, Central Java of Indonesia, through DPSIR. AES Bioflux. 10(1):7-22
  17. Harriss RC, Pilkey OH. 1966. Temperature and salinity control of the concentration of skeletal Na, Mn, and Fe in Dendraster excentricus. Pacific Sci. 20(2):235-238
  18. Hilber SE, Lawrence JM. 2009. Analysis of sediment and gut contents of the sand dollars Mellita tenuis, Encope michelini, and Encope aberrans off the Central Florida Gulf Coast. Gulf Mar Sci. 27(1):74-81
  19. Hodin J, Ferner MC, Ng G, Gaylord B. 2018. Sand dollar larvae show within-population variation in their settlement induction by turbulence. Biol Bull. 235(3):152-166. doi: 10.1086/699827
  20. Hou Y, Vasileva EA, Carne A, McConnell M, Bekhit AEDA, Mishchenko NP. 2018. Naphthoquinones of the spinochrome class: Occurrence, isolation, biosynthesis and biomedical applications. RSC Adv. 8(57):32637-32650. doi: 10.1039/c8ra04777d
  21. Jamei R, Babaloo F. 2017. Stability of blueberry (Cornus mas – Yulyush) anthocyanin pigment under pH and co-pigment treatments. Int J Food Prop. 20(9):2128-2133. doi: 10.1080/10942912.2016.1233116
  22. Johnson AM, Fuller RC. 2015. The meaning of melanin, carotenoid, and pterin pigments in the bluefin killifish, Lucania goodei. Behav Ecol. 26(1):158-167. doi: 10.1093/beheco/aru164
  23. Kennedy GY. Pigments of marine invertebrates. 1979. Adv Mar Biol. 16:309-381. doi: 10.1016/S0065-2881(08)60295-3
  24. Kitazawa C, Fujii T, Egusa Y, Komatsu M, Yamanaka A. 2016. Morphological diversity of blastula formation and gastrulation in temnopleurid sea urchins. Biol Open. 2016;5(11):1555-1566. doi: 10.1242/bio.019018
  25. Li B, Keesing JK, Lourey M, McLaughlin J. 2013. Feeding and bioturbation effects of the sand dollar Peronella lesueuri (L. Agassiz, 1841) (Echinodermata) on microphytobenthos and sediment fluxes. Mar Freshw Behav Physiol. 46(6):431-446. doi: 10.1080/10236244.2013.850834
  26. Lindstedt C, Morehouse N, Pakkanen H, et al. 2010. Characterizing the pigment composition of a variable warning signal of Parasemia plantaginis larvae. Funct Ecol. 24(4):759-766. doi: 10.1111/j.1365-2435.2010.01686.x
  27. Lopes RP. 2011. Fossil sand dollars (Echinoidea: Clypeasteroida) from the Southern Brazilian coast. Rev Bras Paleontol. 14(3):201-214. doi: 10.4072/rbp.2011.3.01
  28. Martinelli-Filho JE, dos Santos RB, Ribeiro CC. 2014. Host selection, host-use pattern and competition in Dissodactylus crinitichelis and Clypeasterophilus stebbingi (Brachyura: Pinnotheridae). Symbiosis. 63(3):99-110. doi: 10.1007/s13199-014-0292-0
  29. McClendon JF. Echinochrome, 1912. A Red Substance in Sea Urchins. J Biol Chem. 11(1):435-442
  30. Morris RL, Pope HW, Sholi AN. 2015. Methods for imaging individual cilia in living echinoid embryos. Methods Cell Biol. doi: 10.1016/bs.mcb.2014.12.004
  31. Olivares-Bañuelos T, Figueroa-Flores S, Carpizo-Ituarte E. 2014. Effect of stress on the ecophysiological response of the sand dollar Dendraster excentricus from northwestern Mexico. Ciencias Mar. 40(2):133-147. doi: 10.7773/cm.v40i2.2360
  32. Pankhurst NW, Munday PL. 2011. Effects of climate change on fish reproduction and early life history stages. Mar Freshw Res. 62(9):1015-1026. doi: 10.1071/MF10269
  33. Prasetya JD, Ambariyanto, Supriharyono, Purwanti F. 2018. Hierarchical synthesis of coastal ecosystem health indicators at Karimunjawa National Marine Park. IOP Conf Ser Earth Environ Sci. 116(1):012094. doi: 10.1088/1755-1315/116/1/012094
  34. Smith AM, Clark DE, Lamare MD, Winter DJ, Byrne M. 2016. Risk and resilience: variations in magnesium in echinoid skeletal calcite. Mar Ecol Prog Ser. 561:1-16. doi: 10.3354/meps11908
  35. Storch D, Menzel L, Frickenhaus S, Pörtner H-O. 2014. Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions. Glob Chang Biol. 20(10):3059-3067. doi: 10.1111/gcb.12645
  36. Sulardiono B, A’in C, Muskananfola MR. 2018. Profiles of water quality at Menjangan Besar Island, Karimunjawa, Central Java Province, Indonesia. Biodiversitas. 19(6):2308-2315. doi: 10.13057/biodiv/d190639
  37. Suryanti, Muskananfola MR, Simanjuntak KE. 2016. Sand dollars distribution pattern and abundance at the coast of Cemara Kecil Island, Karimunjawa, Jepara, Indonesia. J Teknol. 78(4-2):239-244
  38. Takata H, Kominami T. 2004. Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos. Zoolog Sci. 21(10):1025-1035. doi: 10.2108/zsj.21.1025
  39. Takata H, Kominami T. 2011. Novel population of embryonic secondary mesenchyme cells in the keyhole sand dollar Astriclypeus manni. Dev Growth Differ. 53(5):625-638. doi: 10.1111/j.1440-169X.2011.01278.x
  40. Tomčíková Z, Ujhelyiová A, Michlík P, Krivoš Š, Hricová M. 2017. The influence of flourescent pigment on structure and mechanical properties of modified PP and PLA fibres. Fibres Text. (4):51-57
  41. Tudor D, Robinson SC, Cooper PA. 2013. The influence of pH on pigment formation by lignicolous fungi. Int Biodeterior Biodegradation. 80:22-28. doi: 10.1016/j.ibiod.2012.09.013
  42. Wangensteen OS, Dupont S, Casties I, Turon X, Palacín C. 2013. Some like it hot: Temperature and pH modulate larval development and settlement of the sea urchin Arbacia lixula. J Exp Mar Bio Ecol. 449:304-311. doi: 10.1016/j.jembe.2013.10.007
  43. Williams ST, Ito S, Wakamatsu K. 2016. Identification of shell colour pigments in marine snails Clanculus pharaonius and C. margaritarius (Trochoidea; Gastropoda). Vermeij GJ, ed. PLoS One. 11(7):e0156664. doi: 10.1371/journal.pone.0156664

Last update:

No citation recorded.

Last update: 2024-06-15 06:31:52

No citation recorded.