skip to main content

EVALUASI MANAJEMEN PEMBERIAN PAKAN PADA PEMBESARAN IKAN LELE DENGAN SISTEM BIOFLOK PADA SKALA LAPANG

Julie Ekasari  -  Departemen Budidaya Perairan, Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor, Indonesia
Muhammad Ilham Labulal Banin  -  Departemen Budidaya Perairan, Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor, Indonesia
Ichsan Achmad Fauzi  -  Departemen Budidaya Perairan, Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor, Indonesia
*Apriana Vinasyiam  -  Departemen Budidaya Perairan, Indonesia

Citation Format:
Abstract
Manajemen pemberian pakan melalui kombinasi pemberian pakan protein tinggi dan pakan protein rendah diduga dapat menekan biaya produksi pada usaha budidaya pembesaran ikan. Penelitian ini bertujuan untuk mengevaluasi manajemen pemberian pakan dengan kadar protein berbeda terhadap kinerja produksi dan kinerja usaha budidaya pembesaran ikan lele yang dipelihara dalam sistem bioflok. Ikan yang digunakan dalam penelitian ini memiliki bobot awal 5,48±1,31 g dan panjang awal 9,36±0,54 cm. Manajemen pemberian pakan dilakukan dengan pemberian pakan tinggi protein (HP) (33%) selama masa pembesaran dan kombinasi pakan HP (selama 42 hari pertama) dengan pakan rendah protein (LP) (14%) hingga panen. Kedua perlakuan ini diujikan pada dua sistem pembesaran ikan lele dengan metode konvensional pada kepadatan rendah (150 ekor m-3) dan sistem bioflok dengan kepadatan tinggi (500 ekor m-3). Tingkat kelangsungan hidup ikan tidak berbeda nyata antar perlakuan (P>0,05). Laju pertumbuhan dan efisiensi pakan terbaik terdapat pada perlakuan pemberian pakan protein tinggi dan tidak berbeda antara sistem konvensional dan sistem bioflok. Pemberian pakan rendah protein meningkatkan retensi protein pada kedua sistem pemeliharaan. Hasil analisis usaha menunjukkan bahwa perlakuan bioflok dengan pakan HP menghasilkan keuntungan terbesar di antara perlakuan lainnya yaitu Rp 24.413.257, R/C ratio sebesar 1,07, dan payback period selama 1,51 tahun. Penggunaan sistem bioflok dengan pakan berprotein tinggi dapat meningkatkan produktivitas dan keuntungan usaha pembesaran ikan lele dibandingkan dengan sistem konvensional dengan kepadatan rendah. Hasil penelitian ini juga menunjukkan bahwa pemberian pakan dengan protein rendah tidak dapat menurunkan biaya pakan ataupun meningkatkan keuntungan usaha pembesaran ikan lele.
Fulltext View|Download
Keywords: sistem bioflok; ikan lele; pembesaran; protein pakan

Article Metrics:

  1. Abu Bakar, N. S., Mohd Nasir, N., Lananan, F., Abdul Hamid, S. H., Lam, S. S., & Jusoh, A. (2015). Optimization of C/N ratios for nutrient removal in aquaculture system culturing African catfish, (Clarias gariepinus) utilizing Bioflocs Technology. International Biodeterioration & Biodegradation, 102, 100-106. doi: https://doi.org/10.1016/j.ibiod.2015.04.001
  2. AOAC. (2020). Official Method of the Association of Official Analytical Chemists (17th ed.). Gaithersburg, Md.: AOAC International
  3. APHA. (1995). Standard Methods for the Examination of Water and Wastewater: American Public Health Association
  4. Avnimelech, Y. (2009). Biofloc technology: a practical guide book: World Aquaculture Society
  5. Bayu, M., Umar, S., Ginting, N., & Henuk, Y. (2019). Effect of Rabbit Production Factors on Revenue of Rabbit Farmers in Berastagi District, Karo Regency. Jurnal Peternakan Integratif, 7(1)
  6. Browdy, C. L., Ray, A. J., Leffler, J. W., & Avnimelech, Y. (2012). Biofloc-based aquaculture systems. Aquaculture Production Systems. US. Willey Blackwell
  7. Cardona, E., Lorgeoux, B., Geffroy, C., Richard, P., Saulnier, D., Gueguen, Y., . . . Chim, L. (2015). Relative contribution of natural productivity and compound feed to tissue growth in blue shrimp (Litopenaeus stylirostris) reared in biofloc: Assessment by C and N stable isotope ratios and effect on key digestive enzymes. Aquaculture, 448, 288-297. doi: 10.1016/j.aquaculture.2015.05.035
  8. Chen, M., Chen, X.-Q., Tian, L.-X., Liu, Y.-J., & Niu, J. (2020). Beneficial impacts on growth, intestinal health, immune responses and ammonia resistance of pacific white shrimp (Litopenaeus vannamei) fed dietary synbiotic (mannan oligosaccharide and Bacillus licheniformis). Aquaculture Reports, 17. doi: 10.1016/j.aqrep.2020.100408
  9. Dauda, A. B., Romano, N., Ebrahimi, M., Teh, J. C., Ajadi, A., Chong, C. M., . . . Kamarudin, M. S. (2018). Influence of carbon/nitrogen ratios on biofloc production and biochemical composition and subsequent effects on the growth, physiological status and disease resistance of African catfish (Clarias gariepinus) cultured in glycerol-based biofloc systems. Aquaculture, 483, 120-130. doi: https://doi.org/10.1016/j.aquaculture.2017.10.016
  10. De Schryver, P., Crab, R., Defoirdt, T., Boon, N., & Verstraete, W. (2008a). The basics of bio-flocs technology: The added value for aquaculture. Aquaculture, 277(3-4), 125-137. doi: 10.1016/j.aquaculture.2008.02.019
  11. De Schryver, P., Crab, R., Defoirdt, T., Boon, N., & Verstraete, W. (2008b). The basics of bio-flocs technology: The added value for aquaculture. Aquaculture, 277(3), 125-137. doi: https://doi.org/10.1016/j.aquaculture.2008.02.019
  12. Durigon, E. G., Lazzari, R., Uczay, J., Lopes, D. L. d. A., Jerônimo, G. T., Sgnaulin, T., & Emerenciano, M. G. C. (2020). Biofloc technology (BFT): Adjusting the levels of digestible protein and digestible energy in diets of Nile tilapia juveniles raised in brackish water. Aquaculture and Fisheries, 5(1), 42-51. doi: https://doi.org/10.1016/j.aaf.2019.07.001
  13. Effendie, M. (2002). Biologi Perikanan (Edisi Revisi). Penerbit Yayasan Pustaka Nusantara Yogyakarta, 163
  14. Ekasari, J., Suprayudi, M. A., Wiyoto, W., Hazanah, R. F., Lenggara, G. S., Sulistiani, R., . . . Zairin, M. (2016). Biofloc technology application in African catfish fingerling production: The effects on the reproductive performance of broodstock and the quality of eggs and larvae. Aquaculture, 464, 349-356. doi: 10.1016/j.aquaculture.2016.07.013
  15. Fatimah, N., Pande, G. S. J., Natrah, F. M. I., Meritha, W. W., Widanarni, Sucipto, A., & Ekasari, J. (2019). The role of microbial quorum sensing on the characteristics and functionality of bioflocs in aquaculture systems. Aquaculture, 504, 420-426. doi: https://doi.org/10.1016/j.aquaculture.2019.02.022
  16. Fauji, H., Budiardi, T., & Ekasari, J. (2018). Growth performance and robustness of African Catfish Clarias gariepinus (Burchell) in biofloc-based nursery production with different stocking densities. Aquaculture Research, 49(3), 1339-1346. doi: https://doi.org/10.1111/are.13595
  17. Hisano, H., Parisi, J., Cardoso, I. L., Ferri, G. H., & Ferreira, P. M. F. (2020). Dietary protein reduction for Nile tilapia fingerlings reared in biofloc technology. Journal of the World Aquaculture Society, 51(2), 452-462. doi: https://doi.org/10.1111/jwas.12670
  18. Khasanah, N. R. (2016). Evaluasi Kinerja Pertumbuhan Benih Lele (Clarias Gariepinus) Pada Sistem Budidaya Bioflok Yang Diberi Pakan Dengan Kadar Protein Berbeda
  19. Mansour, A. T., & Esteban, M. A. (2017). Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol, 64, 202-209. doi: 10.1016/j.fsi.2017.03.025
  20. Moreno-Arias, A., López-Elías, J. A., Martínez-Córdova, L. R., Ramírez-Suárez, J. C., Carvallo-Ruiz, M. G., García-Sánchez, G., . . . Miranda-Baeza, A. (2018). Effect of fishmeal replacement with a vegetable protein mixture on the amino acid and fatty acid profiles of diets, biofloc and shrimp cultured in BFT system. Aquaculture, 483, 53-62. doi: 10.1016/j.aquaculture.2017.10.011
  21. Oké, V., & Goosen, N. J. (2019). The effect of stocking density on profitability of African catfish (Clarias gariepinus) culture in extensive pond systems. Aquaculture, 507, 385-392
  22. Palm, H., Knaus, U., Wasenitz, B., Bischoff, A., & Strauch, S. (2018). Proportional up scaling of African catfish (Clarias gariepinus Burchell, 1822) commercial recirculating aquaculture systems disproportionally affects nutrient dynamics. Aquaculture, 491, 155-168
  23. Tacon, A. G. J., & Metian, M. (2015). Feed Matters: Satisfying the Feed Demand of Aquaculture. Reviews in Fisheries Science & Aquaculture, 23(1), 1-10. doi: 10.1080/23308249.2014.987209
  24. Valle, B., Dantas Jr, E., Silva, J., Bezerra, R., Correia, E., Peixoto, S., & Soares, R. (2015). Replacement of fishmeal by fish protein hydrolysate and biofloc in the diets of L itopenaeus vannamei postlarvae. Aquaculture Nutrition, 21(1), 105-112
  25. Watanabe, T. (1988). Fish nutrition and mariculture. In JICA Textbook The General Aquaculture Course Tokyo: Departemen of Aquatic Biosciences Tokyo University of Fisheries
  26. Zhang, G., Yin, S., Wang, Y., Li, L., Wang, X., Ding, Y., . . . Hu, Y. (2016). The effects of water temperature and stocking density on survival, feeding and growth of the juveniles of the hybrid yellow catfish from Pelteobagrus fulvidraco (♀)× Pelteobagrus vachelli (♂). Aquaculture Research, 47(9), 2844-2850

Last update:

No citation recorded.

Last update: 2025-01-01 22:19:16

No citation recorded.