skip to main content

PENILAIAN STOK IKAN BERBASIS PANJANG DAN HISTORI NELAYAN PADA PERIKANAN YANG TIDAK MEMILIKI DATA STATISTIK PENANGKAPAN

*Hartono Nurlette  -  Program Studi Ilmu Kelautan Fakultas Perikanan dan Kehutanan Universitas Muhammadiyah Maluku, Indonesia
Saiful Alimudi  -  Program Studi Perikanan Tangkap Fakultas Perikanan dan Kehutanan Universitas Muhammadiyah Maluku, Indonesia
Armina Mahelatu  -  Program Studi Ilmu Kelautan Fakultas Perikanan dan Kehutanan Universitas Muhammadiyah Maluku, Indonesia
Harisa Lipugena  -  Program Studi Ilmu Kelautan Fakultas Perikanan dan Kehutanan Universitas Muhammadiyah Maluku, Indonesia

Citation Format:
Abstract

Penipisan stok ikan pada perikanan dunia saat ini menjadi perhatian yang serius karena mengancam keberlanjutan sumberdaya tersebut. Penilaian stok ikan tidak pernah dilakukan karena data yang terbatas. Namun, permasalahan ini dapat diatasi dengan memahami aspek biologi ikan, khususnya parameter populasi. Penelitian ini bertujuan untuk mengetahui kondisi stok ikan pada perikanan yang minim data penangkapan untuk pengelolaan berkelanjutan. Data panjang ikan Decapterus macarellus sebagai tangkapan utama dikumpulkan untuk memperkirakan parameter pertumbuhan, mortalitas dan eksploitasi dengan Paket TropFishR yang dikembangkan pada program R sehingga cukup handal. Hasil penelitian menunjukkan bahwa stok berada pada kondisi underfished. Tingkat eksploitasi berada di angka (E = 0,30), mortalitas total sebesar (Z = 1.52), mortalitas alami sebesar (M = 1,06) dan mortalitas penangkapan sebesar (F = 0,46). Parameter pertumbuhan von Bertalanffy terdiri dari panjang asimptotik (L = 30 cm), koefisien pertumbuhan (K = 0,7), dan indeks kinerja pertumbuhan (Φ’ = 2,81). Tingkat eksploitasi saat ini masih rendah dibawah eksploitasi optimum (Eopt = 0,53) dan penangkapan optimum (Fopt = 2,92). Pemanfaatan masih mungkin ditingkatkan dengan selalu mengontrol masukan dan luaran serta penangkapan panjang dewasa pertama.

Fulltext
Keywords: Stok Ikan; TropFishR; Ikan Layang; Perikanan Berkelanjutan; Pulau Buano

Article Metrics:

  1. Alam, M. S., Liu, Q., Schneider, P., Mozumder, M. M. H., Chowdhury, M. Z. R., Uddin, M. M., Monwar, M. M., Hoque, M. E., & Barua, S. (2022). Length-Based Stock Assessment for the Data-Poor Bombay Duck Fishery from the Northern Bay of Bengal Coast, Bangladesh. Journal of Marine Science and Engineering, 10(2), Article 2. https://doi.org/10.3390/jmse10020213
  2. Aprian, M., Adrianto, L., Boer, M., & Kurniawan, F. (2023). Re-thinking Indonesian marine fisheries quota-based policy: A qualitative network of stakeholder perception at fisheries management area 718. Ocean & Coastal Management, 243, 106766. https://doi.org/10.1016/j.ocecoaman.2023.106766
  3. Asiedu, B., Amponsah, S. K., Commey, N. A., & Failler, P. (2022). Assessing the Population Parameters of Decapterus punctatus (Cuvier 1829) from the Coastal Waters of Greater Accra, Ghana using TropFishR. Egyptian Journal of Aquatic Biology and Fisheries, 26(4), 335–347. https://doi.org/10.21608/ejabf.2022.249881
  4. Baloch, Zhang, K., Kalhoro, M. A., Memon, . M., Kalhoro, M. T., Buzdar, M. A., Shafi, M., Saeed, F., Sohail, M., & Razaaq. (2020). Preliminary Investigations on Stock Analysis of Tigertooth Croaker (otolithes Ruber) from Balochistan Coast, Pakistan. The Journal of Animal and Plant Sciences, 30(5). https://doi.org/10.36899/JAPS.2020.5.0149
  5. Bentley, J. W., Lundy, M. G., Howell, D., Beggs, S. E., Bundy, A., de Castro, F., Fox, C. J., Heymans, J. J., Lynam, C. P., Pedreschi, D., Schuchert, P., Serpetti, N., Woodlock, J., & Reid, D. G. (2021). Refining Fisheries Advice With Stock-Specific Ecosystem Information. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.602072
  6. Bintoro, G., Lelono, T. D., & Ningtyas, D. P. (2020). Biological aspect of mackerel scad (Decapterus macarellus Cuvier, 1833) in Prigi waters Trenggalek Regency East Java Indonesia. IOP Conference Series: Earth and Environmental Science, 584(1), 012011. https://doi.org/10.1088/1755-1315/584/1/012011
  7. Blasco, G. D., Ferraro, D. M., Cottrell, R. S., Halpern, B. S., & Froehlich, H. E. (2020). Substantial Gaps in the Current Fisheries Data Landscape. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.612831
  8. Dichmont, C. M., Deng, R. A., Punt, A. E., Brodziak, J., Chang, Y.-J., Cope, J. M., Ianelli, J. N., Legault, C. M., Methot, R. D., Porch, C. E., Prager, M. H., & Shertzer, K. W. (2016). A review of stock assessment packages in the United States. Fisheries Research, 183, 447–460. https://doi.org/10.1016/j.fishres.2016.07.001
  9. Faizah, R., & Sadiyah, L. (2019). Aspek Biologi Dan Parameter Pertumbuhan Ikan Layang (decapterus Russelli, Rupell, 1928) Diperairan Selat Malaka. BAWAL Widya Riset Perikanan Tangkap, 11(3), 175. https://doi.org/10.15578/bawal.11.3.2019.175-187
  10. Forson, S., & Amponsah, S. K. (2020). Biological Parameters of False Scad (Decapterus Rhonchus) Encountered in the Coastal Waters of Elmina, Ghana. Research in Agriculture Livestock and Fisheries, 7(3), 507–515. https://doi.org/10.3329/ralf.v7i3.51370
  11. Froese, R., & Pauly, D. (2000). FishBase 2000: Concepts, designs and data sources. ICLARM. https://www.researchgate.net/publication/227641512_FishBase_2000_Concepts_designs_and_data_sources
  12. Froese, R., Winker, H., Coro, G., Demirel, N., Tsikliras, A. C., Dimarchopoulou, D., Scarcella, G., Probst, W. N., Dureuil, M., & Pauly, D. (2018). A new approach for estimating stock status from length frequency data. ICES Journal of Marine Science, 75(6), 2004–2015. https://doi.org/10.1093/icesjms/fsy078
  13. Froese, R., Winker, H., Gascuel, D., Sumaila, U. R., & Pauly, D. (2016). Minimizing the impact of fishing. Fish and Fisheries, 17(3), 785–802. https://doi.org/10.1111/faf.12146
  14. Herwaty, S., Mallawa, A., Najamuddin, N., & Zainuddin, M. (2024). Population dynamic of mackerel scad (Decapterus macarellus Cuvier, 1833) in the Timor Sea. Jurnal Kelautan Tropis, 27(2), 333–344. https://doi.org/10.14710/jkt.v27i2.21918
  15. Hilborn, R. (2020). Effective fisheries management instrumental in improving fish stock status. Proceedings of the National Academy of Sciences of the United States of America, 117(4), 2218–2224. https://doi.org/10.1073/pnas.1909726116
  16. Hilborn, R., Fulton, E. A., Green, B. S., Hartmann, K., Tracey, S. R., & Watson, R. A. (2015). When is a fishery sustainable? Canadian Journal of Fisheries and Aquatic Sciences, 72(9), 1433–1441. https://doi.org/10.1139/cjfas-2015-0062
  17. Hommik, K., Fitzgerald, C. J., Kelly, F., & Shephard, S. (2020). Dome-shaped selectivity in LB-SPR: Length-Based assessment of data-limited inland fish stocks sampled with gillnets. Fisheries Research, 229, 105574. https://doi.org/10.1016/j.fishres.2020.105574
  18. Jeffers, V. F., Humber, F., Nohasiarivelo, T., Botosoamananto, R., & Anderson, L. G. (2019). Trialling the use of smartphones as a tool to address gaps in small-scale fisheries catch data in southwest Madagascar. Marine Policy, 99, 267–274. https://doi.org/10.1016/j.marpol.2018.10.040
  19. Kementerian Kelautan dan Perikanan. (2022). Kelautan dan Perikanan dalam Angka Tahun 2022: Vol. 1 Tahun 2022. Pusat Data Statistik dan Informasi, Kementerian Kelautan dan Perikanan. Buku_KPDA_2022_270522_FINAl_FIX_FP_SP.pdf
  20. Komul Kalidin, B., Mattone, C., & Sheaves, M. (2020). Barriers to effective monitoring and evaluation of small-scale fisheries in small island developing states: An example from Mauritius. Marine Policy, 118, 103845. https://doi.org/10.1016/j.marpol.2020.103845
  21. Korkmaz, B., Bolat, Y., & Cilbiz, M. (2023). Length-based Stock Assessment for the Data-poor Crayfish Fishery from the Eğirdir Lake, Turkiye. Turkish Journal of Fisheries and Aquatic Sciences, 23(3). https://doi.org/10.4194/TRJFAS22354
  22. Kumar, P. (2016). Estimation of accumulated soil organic carbon stock in tropical forest using geospatial strategy. Egyptian Journal of Remote Sensing and Space Science, 19(1), Article 1. https://doi.org/10.1016/j.ejrs.2015.12.003
  23. Liu, Y., Zhang, C., Xu, B., Xue, Y., Ren, Y., & Chen, Y. (2021). Batasan | Akuntansi Pertumbuhan Musiman dalam Analisis Per-Rekrutmen: Studi Kasus Empat Perikanan Komersial di Pesisir Laut Cina. 8. https://doi.org/10.3389/fmars.2021.567240
  24. Lorenzen, K. (2016). Stock assessment in inland fisheries: A foundation for sustainable use and conservation. Reviews in Fish Biology and Fisheries, 26(3), 405–440. https://doi.org/10.1007/s11160-016-9435-0
  25. Machado, A. M. S., Giehl, E. L. H., Fernandes, L. P., Ingram, S. N., & Daura-Jorge, F. G. (2021). Alternative data sources can fill the gaps in data-poor fisheries. ICES Journal of Marine Science, 78(5), 1663–1671. https://doi.org/10.1093/icesjms/fsab074
  26. Maunder, M. N., & Piner, K. R. (2015). Contemporary fisheries stock assessment: Many issues still remain. ICES Journal of Marine Science, 72(1), 7–18. https://doi.org/10.1093/icesjms/fsu015
  27. Miethe, T., Reecht, Y., & Dobby, H. (2019). Reference points for the length-based indicator Lmax5% for use in the assessment of data-limited stocks. ICES Journal of Marine Science, 76(7), 2125–2139. https://doi.org/10.1093/icesjms/fsz158
  28. Mildenberger, T. K., Taylor, M. H., & Wolff, M. (2017). : An R package for fisheries analysis with length-frequency data. Methods in Ecology and Evolution, 8(11), 1520–1527. https://doi.org/10.1111/2041-210X.12791
  29. Million Tesfaye & A. Getahun. (2021). Review on fish stock assessments models with more emphasis on the use of empirical and analytical models for potential yield prediction. Acta Entomology and Zoology. https://doi.org/10.33545/27080013.2021.V2.I2A.40
  30. Moore, J. W., Connors, B. M., & Hodgson, E. E. (2021). Conservation risks and portfolio effects in mixed-stock fisheries. Fish and Fisheries, 22(5), 1024–1040. https://doi.org/10.1111/faf.12567
  31. Neubauer, P., Thorson, J. T., Melnychuk, M. C., Methot, R., & Blackhart, K. (2018). Drivers and rates of stock assessments in the United States. PLOS ONE, 13(5), e0196483. https://doi.org/10.1371/journal.pone.0196483
  32. Ngabalin, A. M. (2024). Application of Measured Fishing Method in Kei Islands, Maluku Province. Jurnal Ilmiah Manajemen Kesatuan, 12(5), 1491–1498
  33. Nilsson, J. A., Fulton, E. A., Johnson, C. R., & Haward, M. (2019). How to Sustain Fisheries: Expert Knowledge from 34 Nations. Water, 11(2), Article 2. https://doi.org/10.3390/w11020213
  34. Nilsson, J. A., Johnson, C. R., Fulton, E. A., & Haward, M. (2019). Fisheries sustainability relies on biological understanding, evidence-based management, and conducive industry conditions. ICES Journal of Marine Science, 76(6), 1436–1452. https://doi.org/10.1093/icesjms/fsz065
  35. Noleto-Filho, E. M., Carvalho, A. R., Thomé-Souza, M. J. F., & Angelini, R. (2022). Reporting the accuracy of small-scale fishing data by simply applying Benford’s law. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.947503
  36. Nurdin, E., Kembaren, D. D., & Tirtadanu. (2023). Stock assessment and management strategies for shark fisheries in the Arafura Sea: A length-based analysis of Carcharhinus sealei. Egyptian Journal of Aquatic Research, 49(2), 261–267. https://doi.org/10.1016/j.ejar.2023.02.001
  37. Park, J. M., Hashimoto, H., Jeong, J. M., Kim, H. J., & Baeck, G. W. (2013). Age and growth of the robust tonguefish Cynoglossus robustus in the Seto Inland Sea, Japan. Animal Cells and Systems, 17(4), 290–297. https://doi.org/10.1080/19768354.2013.826281
  38. Pita, A., Casey, J., Hawkins, S., Villarreal, M., & ... (2016). Conceptual and practical advances in fish stock delineation. Fisheries …, Query date: 2022-08-06 12:04:16. https://www.sciencedirect.com/science/article/pii/S0165783615002507
  39. Reis-Filho, J. A., Harvey, E. S., & Giarrizzo, T. (2019). Impacts of small-scale fisheries on mangrove fish assemblages. ICES Journal of Marine Science, 76(1), 153–164. https://doi.org/10.1093/icesjms/fsy110
  40. Retnoningtyas, H., Agustina, S., Dhani, A. K., Wiryawan, B., Palm, H. W., Natsir, M., Hartati, I. D., Prasetia, R., & Yulianto, I. (2023). Impact of Fishing Pressure on Reproductive Biology of Mackerel Scad, Decapterus macarellus (Cuvier, 1833) in Sulawesi Sea and Maluku Sea, Indonesia. Asian Fisheries Science, 36(3). https://doi.org/10.33997/j.afs.2023.36.3.005
  41. Retnoningtyas, H., Agustina, S., Natsir, M., Ningtias, P., Hakim, A., Dhani, A. K., Hartati, I. D., Pingkan, J., Simanjuntak, C. P. H., Wiryawan, B., Taurusman, A. A., Purbayanto, A., Palm, H. W., Prasetia, R., & Yulianto, I. (2024). Reproductive biology of the mackerel scad, Decapterus macarellus (Cuvier, 1833), in the Sulawesi Sea, Indonesia. Regional Studies in Marine Science, 69. Scopus. https://doi.org/10.1016/j.rsma.2023.103300
  42. Rudd, M. B., & Thorson, J. T. (2018). Accounting for variable recruitment and fishing mortality in length-based stock assessments for data-limited fisheries. Canadian Journal of Fisheries and Aquatic Sciences, 75(7), 1019–1035. https://doi.org/10.1139/cjfas-2017-0143
  43. Taylor, M. H., & Mildenberger, T. K. (2017). Extending electronic length frequency analysis in R. Fisheries Management and Ecology, 24(4), 330–338. https://doi.org/10.1111/fme.12232
  44. Teniwut, W. A. (2016). For sustainable revenue of fisheries sector in small islands: Evidence of Maluku, Indonesia. https://www.semanticscholar.org/paper/For-sustainable-revenue-of-fisheries-sector-in-of-Teniwut/2160134b7e68d4a27dd0effdcdfa6cb5ff229cc2?utm_source=consensus
  45. Then, A. Y., Hoenig, J. M., Hall, N. G., Hewitt, D. A., & Handling editor: Ernesto Jardim. (2015). Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES Journal of Marine Science, 72(1), 82–92. https://doi.org/10.1093/icesjms/fsu136

Last update:

No citation recorded.

Last update: 2025-04-18 17:55:09

No citation recorded.