skip to main content

SINTESIS DAN KARAKTERISASI ZnO SEBAGAI COATING ANTIKOROSI ZnO/Al(OH)3 PADA MATERIAL BAJA KARBON

*Adhi Setiawan scopus  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Open Access Copyright (c) 2018 Teknik

Citation Format:
Abstract

ZnO seringkali digunakan sebagai aplikasi pigmen anti korosi pada logam karena tidak beracun, ramah lingkungan, murah serta memiliki ketahanan korosi yang relatif baik. Partikel ZnO dalam penelitian ini disintesis dengan menggunakan metode presipitasi dengan ZnCl2 dan NaOH sebagai prekursor. Partikel ZnO yang dihasilkan dengan metode tersebut memiliki morfologi berbentuk batang dengan ujung lancip. Hasil SEM menunjukkan bahwa semakin rendah konsentrasi NaOH maka ukuran partikel ZnO yang dihasilkan akan semakin kecil. Pada konsentrasi NaOH sebesar 0,5 M dihasilkan ZnO dengan ukuran terkecil sebesar 123 nm. Hasil XRD menunjukkan bahwa ZnO memiliki kristalinitas tinggi dengan ukuran kristal mencapai 47 nm pada konsentrasi NaOH sebesar 0,5 M. Penggunaan pigmen ZnO/Al(OH)3 menunjukkan ketahanan korosi yang baik pada larutan NaCl 3,5% dengan specimen baja karbon. Hasil penelitian menunjukkan bahwa pada komposisi ZnO/Al(OH)3 sebesar 1:3 memiliki ketahanan korosi yang terbaik karena memberikan nilai laju korosi terendah yaitu sebesar 0,86 mpy.

Fulltext View|Download
Keywords: ZnO; ketahanan korosi; coating; polarisasi linear; SEM

Article Metrics:

  1. Conde, N.N., Dakhsi, K., Zouihri, H., Abdelouahdi, K., Laanab, L., Benaissa, M. & Jaber, B. (2011). Preparation of ZnO Nanoparticles without Any Annealing and Ripening Treatment. Journal of Materials Science and Engineering A, 1(7A), 985-990
  2. Dejun, K., Xuequana, D. & Jinchun, W. (2015). Effects of Anodic Oxidation on Corrosion Properties of Al Coating by Arc Spraying in Seawater. J. of Surface and Interface Analysis, 47(9), 911-918
  3. Demoisson, F., Piolet, R. & Bernard, F. (2014). Hydrothermal Synthesis of ZnO Crystals from Zn(OH)2 Metastable Phases at Room to Supercritical Conditions. Crystal Growth and Desain, 14(11), 5388-5396
  4. Dhokea, Sh.K., Khannaa, A.S. & Sinha, T.J.M. (2009). Effect of nano-ZnO particles on the corrosion behavior of alkyd-based waterborne coatings. J. of Progress in Organic Coatings, 64(4), 371–382
  5. Elsner, C.I., Cavalcanti, E., Ferraz, O. & Sarli, A.R.D. (2003). Evaluation of The Surface Treatment Effect on The Anticorrosive Performance of Paint Systems on Steel. J. of Progress in Organic Coatings, 48(2003), 50–62
  6. Forsgren, A. (2006). Corrosion Control Through Organic Coating. United States: CRC Press
  7. Fujino, T., Miyamoto, M. & Noguchi, H. (2000). Formation of chemical conversion coatings with high corrosion-resistance on aluminum in strontium hydroxide by secondary dipping treatment. J. of Japan Institute of Light Metals, 50(2000), 486-490
  8. Jagtap, R.N., Patil, P.P. & Hassan, S.Z. (2008). Effect of Zinc Oxide in Combating Corrosion in Zinc-Rich Primer. J. of Progress in Organic Coatings, 63(4), 389–394
  9. Jaˇsková, V. & Kalendová, A. (2012). Anticorrosive Coatings Containing Modified Phosphates. J. of Progress in Organic Coatings, 75(4), 328-334
  10. Kumar, S.A, Balakrishnan, T., Alagar, M. & Denchev, Z. (2006). Development and Characterization of Silicone/Phosphorus Modified Epoxy Materials and Their Application as Anticorrosion and Antifouling Coatings. J. of Progress in Organic Coatings, 55(3), 207–217
  11. Mahdavian, M. & Attar M.M.. (2006). Another Approach in Analysis of Paint Coatings with EIS Measurement: Phase Angle at High Frequencies. J. of Corrosion Science, 48(12), 4152–4157
  12. Mende, L.S. & Driscoll, J.L.M. (2007). ZnO-Nanostructures, Defects, and Devices. J. of Material. Today, 10(5), 40-48
  13. Naderi, R., & Attar, M.M. (2009). Electrochemical Study of Protective Behavior of Organic Coating Pigmented With Zinc Aluminum Polyphosphate as a Modified Zinc Phosphate at Different Pigment Volume Concentrations. J. of Progress in Organic Coatings, 66(3), 314-320
  14. Peng, F., Li, H, Wang, D., Tian, P., Tian, Y., Yuan, G., Xu, D. & Liu, X. (2016). Enhanced Corrosion Resistance and Biocompatibility of Magnesium Alloy by Mg-Al Layered Double Hydroxide. ACS Application Material Interfaces, 8(51), 35033-35044
  15. Ramezanzadeh, B. & Attar, M.M. (2011). Studying The Effects of Micro and Nano Sized ZnO Particles on The Corrosion Resistance and Deterioration Behavior of an Epoxy-Polyamide Coating on Hot-Dip Galvanized Steel. J. of Progress in Organic Coatings, 71(2011), 314-328
  16. Rashvand, M. & Ranjbar, Z. (2013). Effect of nano-ZnO Particles on the Corrosion Resistance of Polyurethane-Based Waterborne Coatings Immersed in Sodium Chloride Solution via EIS Technique. J. of Progress in Organic Coatings, 76(10), 1413–1417
  17. Romo, L.E., Saade, H., Puente, B., L´opez, M.L., Betancourt, R., & L´opez, R.G. (2011). Precipitation of Zinc Oxide Nanoparticles in Bicontinuous Microemulsions. Journal of Nanomaterials, 2011(2011), 1-9
  18. Sun, L., Boo, W.J., Clearfield, A., Sue, H.J. & Pham, H.Q. (2008). Barrier Properties of Model Epoxy Nanocomposites. J. of Membrane Science, 318(1-2), 129–136
  19. Sun, M., Chen, Z., Bu, Y., Yu, J. & Hou, B. (2014). Effect of ZnO on The Corrosion of Zinc, Q235 Carbon Steel and 304 Stainless Steel Under White Light Illumination. J. of Corrosion Science, 82 ,77–84
  20. Smith, W.F.,& Hashemi, J. (2006). Foundations of Materials Science and Engineering, 4th edition. New York: McGraw-Hill
  21. Yang, L.H., Liu, F.C. & Han, E.H. (2005). Effects of P/B on the Properties of Anticorrosive Coatings with Different Particle Size. J. of Progress in Organic Coatings, 53(2), 91-98

Last update:

No citation recorded.

Last update: 2024-12-11 00:41:15

No citation recorded.