skip to main content

Effect of heat treatment on micro structure, hardness, high temperature oxidation resistance of martensitic stainless steel 13Cr3Mo3Ni-cast

Pengaruh Perlakuan Panas Terhadap Struktur Mikro, Kekerasan dan Ketahanan Oksidasi Suhu Tinggi Pada Baja Tahan Karat Martensitik 13Cr3Mo3Ni-Cor

*Moch Syaiful Anwar  -  Pusat Penelitian Metalurgi dan Material, Lembaga Ilmu Pengetahuan Indonesia (LIPI), Indonesia
Eric Jonathan Yulianto  -  Physics Energy Engineering, Universitas Surya, Indonesia
Septian Adi Chandra  -  , Indonesia
Rahma Nisa Hakim  -  Pusat Penelitian Metalurgi dan Material, Lembaga Ilmu Pengetahuan Indonesia (LIPI), Indonesia
Sri Hastuty  -  , Indonesia
Efendi Mabruri  -  , Indonesia
Open Access Copyright (c) 2019 TEKNIK

Citation Format:
Abstract

This paper reports the effect of heat treatment on microstructure, hardness and high-temperature oxidation resistance of martensitic stainless steels13Cr3Mo3Ni-cast. The aim of this reseach is to increase quality of the steel through heat treatment process on microstructure, hardness and high-temperature oxidation resistance.  The steels samples were prepared by a process sequence ofinduction melting, casting, austenitisazed, single tempered and double tempered. Austenitization process of 1020°C was conducted until 4 hours and quench in water. Then, tempering process of 650°C was carried out until 2 hours and cooled in the air and then double tempering process of 550°C was carried out until 2 hours and air cooled. The double tempered steels were subjected to microstructure, hardness and high-temperature oxidation test of 400 – 700 °C. Then, the experimental results of double tempered steel were compared with control, austenitisazed and single tempered steels. The double tempered treatment revealed a positive effect on the increament properties of martensitic stainless steel 13Cr3Mo3Ni-cast    in the high-temperature environment.

Fulltext View|Download
Keywords: high temperature; oxidation; martensitic stainless steel; 13Cr3Mo3Ni-cast; heat treatment; microstructure; hardness vikers

Article Metrics:

  1. Anwar, M. S., Mabruri, E. (2010). Modifikasi Permukaan Baja Tahan Karat Martensitik 420 Dengan Bahan Coating Yang Berbeda. Majalah Korosi, 19, 29-36
  2. Di Gianfrancesco, A. (2017). Material for Ultra-Supercritical and Advance Ultra-Supercritical Power Plants(p. 1-49). Woodhead Publishing Series in Energy, Number 104
  3. Garrison Jr., W. M., Amuda,M. (2017). Stainless Steels: Martensitic, Reference Module in Materials Science and Materials Engineering. https://doi.org/10.1016/B978-0-12-803581-8.02527-3
  4. Huttunen-Saarivirta, E., Kilpi, L.,Hakala, T.J.,Carpen, L.,Ronkainen, H. (2016). Tribocorrosion study of martensitic and austenitic stainless steels. Tribology International, 95, 358-371
  5. Liu, L., Yang, Z., Zhang, C., Ueda, M., Kawamura, K., Maruyama, T. (2015). Effect of grain size on the oxidation of Fe–13Cr–5Ni alloy at 973 K in Ar–21 vol%O2.Corrosion Science, 91, 195-202
  6. Liu, L., Yang, Z., Zhang, C., Ueda, M., Kawamura, K., Maruyama, T. (2015).Effect of grain size on the oxidation of Fe–13Cr–5Ni alloy at 973 Kin Ar–21 vol%O2. Corrosion Science, 91, 195-202
  7. Mabruri, E.,Anwar, M. S.,Prifiharni, S.,Romijarso, T. B., Adjiantoro, B. (2015). PengaruhMo dan Ni Terhadap StrukturMikro dan Kekerasan Baja TahanKarat Martensitik 13Cr.MajalahMetalurgi,3, 133–140
  8. McCloskey, T., Dooley, R., McNaughton,W. (1999). Turbine Steam Path Damage:Theoryand Practice. ,vol. 2:DamageMechanisms,”EPRI, Palo Alto, CA
  9. Prifiharni, S., Anwar, M. S.,Mabruri, E. (2016). Pengaruh Perlakuan Panas terhadap StrukturMikro dan Ketahanan KorosiBaja Tahan Karat Martensitik 13Cr-1Mo.Widyariset, 2(1), 9–16
  10. Rujisomnapa, J., Seechompoo, P., Suwannachoat,P., Suebca,S.and Wongpanya, P. (2010). High Temperature Oxidation Behaviour of Low Carbon Steel and Austenitic Stainless Steel.Journal of Metals, Materials and Minerals, 20(3), 31-36
  11. Tao, X., Li, C., Han, L. andGu, J., (2016). Microstructure Evolution and Mechanical Properties of X12CrMoWVNbN10-1-1 Steel during Quenching and Tempering Process.Journal of Materials Research and Technology, 5(1), 45
  12. Technical Guide, High-Temperature Characteristics of Stainless Steel. American Iron and Steel Institute, No. 9004. https://www.nickelinstitute.org/library/?opt_perpage=20&opt_layout=grid&searchTerm=9004&page=1
  13. Trindade, V., Christ, H.-J., Krupp, U. (2010). Grain-size effects on the high-temperatureoxidation behaviour of chromium steels.Oxid. Met., 73, 551–563
  14. Xia, Z. X., Zhang,C., Huang, X. F., Liu, W. B. & Yang, Z. G. (2015).Improve Oxidation Resistance at High Temperature by Nanocrystalline Surface Layer. Scientific Reports, volume5, Article number: 13027
  15. Ziegler, D., Puccinelli, M., Bergallo, B., Picasso, A. (2013). Investigation of Turbine Blade Failure in a Thermal PowerPlant.Case Studies in Engineering Failure Analysis, 1, 192–199

Last update:

  1. Heat Treatment Technology for Stainless Steel 316(L)

    Progress in Physics of Metals, 23 (4), 2022. doi: 10.15407/ufm.23.04.729
  2. Pengembangan Material Maju Superkonduktor Mg-B dengan Penambahan Graphene Oxide melalui Proses Powder in Sealed Tube

    Brillian Ardy Mahendra, Satrio Herbirowo, Iman Saefuloh, Murni Handayani. Jurnal Mesin Nusantara, 5 (1), 2022. doi: 10.29407/jmn.v5i1.17894

Last update: 2024-12-26 02:51:05

No citation recorded.