Effect of heat treatment on micro structure, hardness, high temperature oxidation resistance of martensitic stainless steel 13Cr3Mo3Ni-cast

Pengaruh Perlakuan Panas Terhadap Struktur Mikro, Kekerasan dan Ketahanan Oksidasi Suhu Tinggi Pada Baja Tahan Karat Martensitik 13Cr3Mo3Ni-Cor

*Moch Syaiful Anwar  -  , Indonesia
Eric Jonathan Yulianto  -  , Indonesia
Septian Adi Chandra  -  , Indonesia
Rahma Nisa Hakim  -  , Indonesia
Sri Hastuty  -  , Indonesia
Efendi Mabruri  -  , Indonesia
Published: 31 May 2019.
Open Access
Citation Format:
Article Info
Section: Artikel
Language: EN
Full Text:
Statistics: 302 434

This paper reports the effect of heat treatment on microstructure, hardness and high-temperature oxidation resistance of martensitic stainless steels13Cr3Mo3Ni-cast. The aim of this reseach is to increase quality of the steel through heat treatment process on microstructure, hardness and high-temperature oxidation resistance.  The steels samples were prepared by a process sequence ofinduction melting, casting, austenitisazed, single tempered and double tempered. Austenitization process of 1020°C was conducted until 4 hours and quench in water. Then, tempering process of 650°C was carried out until 2 hours and cooled in the air and then double tempering process of 550°C was carried out until 2 hours and air cooled. The double tempered steels were subjected to microstructure, hardness and high-temperature oxidation test of 400 – 700 °C. Then, the experimental results of double tempered steel were compared with control, austenitisazed and single tempered steels. The double tempered treatment revealed a positive effect on the increament properties of martensitic stainless steel 13Cr3Mo3Ni-cast    in the high-temperature environment.

high temperature; oxidation; martensitic stainless steel; 13Cr3Mo3Ni-cast; heat treatment; microstructure; hardness vikers

Article Metrics:

  1. Anwar, M. S., Mabruri, E. (2010). Modifikasi Permukaan Baja Tahan Karat Martensitik 420 Dengan Bahan Coating Yang Berbeda. Majalah Korosi, 19, 29-36.
  2. Di Gianfrancesco, A. (2017). Material for Ultra-Supercritical and Advance Ultra-Supercritical Power Plants(p. 1-49). Woodhead Publishing Series in Energy, Number 104.
  3. Garrison Jr., W. M., Amuda,M. (2017). Stainless Steels: Martensitic, Reference Module in Materials Science and Materials Engineering.https://doi.org/10.1016/B978-0-12-803581-8.02527-3.
  4. Huttunen-Saarivirta, E., Kilpi, L.,Hakala, T.J.,Carpen, L.,Ronkainen, H. (2016). Tribocorrosion study of martensitic and austenitic stainless steels. Tribology International, 95, 358-371.
  5. Liu, L., Yang, Z., Zhang, C., Ueda, M., Kawamura, K., Maruyama, T. (2015). Effect of grain size on the oxidation of Fe–13Cr–5Ni alloy at 973 K in Ar–21 vol%O2.Corrosion Science, 91, 195-202.
  6. Liu, L., Yang, Z., Zhang, C., Ueda, M., Kawamura, K., Maruyama, T. (2015).Effect of grain size on the oxidation of Fe–13Cr–5Ni alloy at 973 Kin Ar–21 vol%O2. Corrosion Science, 91, 195-202.
  7. Mabruri, E.,Anwar, M. S.,Prifiharni, S.,Romijarso, T. B., Adjiantoro, B. (2015). PengaruhMo dan Ni Terhadap StrukturMikro dan Kekerasan Baja TahanKarat Martensitik 13Cr.MajalahMetalurgi,3, 133–140.
  8. McCloskey, T., Dooley, R., McNaughton,W. (1999). Turbine Steam Path Damage:Theoryand Practice. ,vol. 2:DamageMechanisms,”EPRI, Palo Alto, CA.
  9. Prifiharni, S., Anwar, M. S.,Mabruri, E. (2016). Pengaruh Perlakuan Panas terhadap StrukturMikro dan Ketahanan KorosiBaja Tahan Karat Martensitik 13Cr-1Mo.Widyariset, 2(1), 9–16.
  10. Rujisomnapa, J., Seechompoo, P., Suwannachoat,P., Suebca,S.and Wongpanya, P. (2010). High Temperature Oxidation Behaviour of Low Carbon Steel and Austenitic Stainless Steel.Journal of Metals, Materials and Minerals, 20(3), 31-36.
  11. Tao, X., Li, C., Han, L. andGu, J., (2016). Microstructure Evolution and Mechanical Properties of X12CrMoWVNbN10-1-1 Steel during Quenching and Tempering Process.Journal of Materials Research and Technology, 5(1), 45.
  12. Technical Guide, High-Temperature Characteristics of Stainless Steel. American Iron and Steel Institute, No. 9004. https://www.nickelinstitute.org/library/?opt_perpage=20&opt_layout=grid&searchTerm=9004&page=1.
  13. Trindade, V., Christ, H.-J., Krupp, U. (2010). Grain-size effects on the high-temperatureoxidation behaviour of chromium steels.Oxid. Met., 73, 551–563.
  14. Xia, Z. X., Zhang,C., Huang, X. F., Liu, W. B. & Yang, Z. G. (2015).Improve Oxidation Resistance at High Temperature by Nanocrystalline Surface Layer. Scientific Reports, volume5, Article number: 13027.
  15. Ziegler, D., Puccinelli, M., Bergallo, B., Picasso, A. (2013). Investigation of Turbine Blade Failure in a Thermal PowerPlant.Case Studies in Engineering Failure Analysis, 1, 192–199.