Peningkatan Kekuatan Sifat Mekanis Komposit Serat Alam menggunakan Serat Enceng Gondok (Tinjauan Pustaka)

*Sulardjaka Sulardjaka scopus  -  Departemen Teknik Mesin, Universitas Diponegoro, Indonesia
Sri Nugroho scopus  -  Departemen Teknik Mesin, Universitas Diponegoro, Indonesia
Rifky Ismail scopus  -  Departemen Teknik Mesin, Universitas Diponegoro, Indonesia
Received: 28 May 2019; Revised: 3 Feb 2020; Accepted: 1 May 2020; Published: 31 May 2020.
Open Access Copyright (c) 2020 TEKNIK

Citation Format:
Abstract

Enceng gondok (Eichhornia crassipes) merupakan tumbuhan perairan yang memiliki laju pertumbuhan cepat. Pertumbuhan populasi yang tinggi menyebabkan berbagai persoalan yang menyangkut gangguan keseimbangan ekosistem, gangguan irigasi dan sedimentasi. Enceng gondok memiliki potensi untuk diaplikasikan dalam pembuatan komposit serat alam. Serat selulosa dari tanaman enceng gondok dapat dimanfaatkan sebagai penguat pada pembuatan komposit. Kajian pustaka ini bertujuan untuk memberikan kajian potensi pengembangan pemanfaatan serat enceng gondok dalam pembuatan komposit serat alam. Pemanfaatan serat enceng gondok sebagai penguat komposit untuk aplikasi komersial masih sangat terbatas. Hal ini disebabkan sifat mekanis yang dihasilkan masih rendah. Untuk mendapatkan kekuatan komposit yang semakin meningkat, diperlukan penerapan dan optimasi parameter proses pengolahan serat, perlakuan awal serat dalam pembuatan komposit serat enceng gondok. Kajian pustaka ini selain memberikan kajian literatur tentang sifat fisis dan mekanis komposit serat enceng gondok yang telah dihasilkan juga memberikan kajian literatur tentang faktor yang mempengaruhi sifat serat alam, sifat kimia, sifat fisis, sifat mekanis, proses pembuatan serat, dan perlakuan serat sehingga hasil penelitian tersebut dapat digunakan rujukan dalam pengembangan komposit dengan penguat serat enceng gondok.

Keywords: serat enceng gondok; komposit serat alam; sifat mekanis; sifat fisis; sifat kimia; penguatan

Article Metrics:

  1. Abdel-Fattah, A.F., & Abdel-Naby, M.A. (2012) Pretreatment and enzymic saccharification of water hyacinth cellulose. Carbohydrate Polymers, 87, 2109–2113
  2. Abral, H., Putra, H., Sapuan, S.M., & Ishak, M.R. (2013) Effect of alkalization on mechanical properties of water hyacinth fibers-unsaturated polyester composites, Polymer-Plastics Technology and Engineering, 52, 446–451
  3. Abral, H., Kadriadi, D., Rodianus, A., Mastariyanto, P., Ilhamdi, S., Sapuan, A.S.M., & Ishak, M.R. (2014) Mechanical properties of water hyacinth fibers – polyester composites before and after immersion in water. Materials and Design. 58, 125–129
  4. Abral, H., Dalimunthe, M.H., Hartono, J., Efendi, R.P., Asrofi, M., Sugiarti, E., SM Sapuan, S.M., Park, J.W., Kim, H. (2018) Characterization of tapioca starch biopolymer composites reinforced with micro scale water hyacinth fibers. Starch - Stärke, 70(7-8)
  5. Aji, T.A., Purwanto, H., & Respati, S. M. B. (2018) Pengaruh ketebalan komposit matrik resin dengan penguat kulit eceng gondok (eichhornia crassipes) yang dianyam terhadap kemampuan balistik, Momentum, Vol. 14(1), 75-79
  6. Aleño, J. B., Ramos, H. J. & Jose, W. I. (2014) Determination of Properties of yarns made from Water Hyacinth and pinneapple indigenous fibers treated using plasma enhaced chemical vapour deposition, 5th International Conference on Chemical, Ecology and Environmental Sciences (ICCEES'2014) Jan. 13-14, Penang (Malaysia)
  7. Amanda, P. (2011) 2030, Rawa Pening Bebas Eceng Gondok,", https://regional.kompas.com/read/
  8. /08/03/1914388/2030.Rawa.Pening.Bebas.Eceng.Gondok., diakses 10 April 2019
  9. Asrofi, M. , Abral, H., Kasim, A. & Pratoto, A., (2017), XRD and FTIR Studies of Nanocrystalline Cellulose from Water Hyacinth (Eichornia crassipes) Fiber, Journal of Metastable and Nanocrystalline Materials, Vo. 29., 9-16
  10. Asrofi, M., Abral, H., Kasim. A., Pratoto, A., Mahardika, M., & Hafizulhaq, F. (2018) Mechanical Properties of a Water Hyacinth Nanofiber Cellulose Reinforced Thermoplastic Starch Bionanocomposite: Effect of Ultrasonic Vibration during Processing. Fibers, 6(40), 1 – 9
  11. Asrofi, M., Abral, H., Putra, Y.K., Sapuan, S.M. & Hyun-Joong Kim. (2018) Effect of duration of sonication during gelatinization on properties of tapioca starch water hyacinth fiber biocomposite. International Journal of Biological Macromolecules, 108, 167–176
  12. Athijayamani, A., Thiruchitrambalam, M., Manikandan, V., & Pazhanivel, D. (2009) Mechanical properties of natural fibers reinforced polyester hybrid composite, Int J Plast Technol, 13(1), 1-12
  13. Bahra, M.S., Gupta, V. K. & Aggarwal, L. (2017). Effect of Fibre Content on Mechanical Properties and Water Absorption Behaviour of Pineapple/HDPE Composite. Materials Today: Proceedings, Vol 4 (2), Part A, 3207-3214
  14. Balachandar, M., Vijaya Ramnath, B., Barath, R. & Bharath Sankar, S., (2019) Mechanical Characterization of Natural Fiber Polymer Composites. Materials Today: Proceedings, Vol. 6 (2), 1006-1012
  15. Baley, C., Gomina, M., Breard, J., Bourmauda, A., & Davies, P. (2019). Variability of mechanical properties of flax fibres for composite reinforcement. A review., Industrial Crops & Products, Article In Press Available online 22 November 2019
  16. Bhuvaneshwari, M. & Sangeetha (2017). Development of Water Hyacinth nonwoven fabrics for thermal insulation. Journal on Future Engineering & Technology, 13(1), 22 – 29
  17. Bismarck, A., Mishra, S., & Lampke, T., (2005). Plant fibers as reinforcement for green composites. In A. K. Mohanty, M. Misra, & L. T. Drzal (Eds.), Natural Fibers, Biopolymers, and Biocomposites (p. 38). Boca Raton, FL: CRC Press
  18. Bordoloi, S., Kashyap, V., Garg, A., Sreedeep, S., Wei, L. & Andriyas, S. (2018) Measurement of mechanical characteristics of fiber from a novel invasive weed: A comprehensive comparison with fibers from agricultural crops, Measurement, 113, 62–70
  19. Cai, M., Takagi, H., Nakagaito, A.N., Yan Li & Waterhouse, G.I.N., (2016). Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, Vol. 90, 589-597
  20. Cheng, S., Lau, K., Liu,T, Zhao,Y, Lam, P.M. & Yin, Y. (2009) Mechanical and thermal properties of chicken feather fiber/PLA green composites. Composites Part B, 40(7), 650–654
  21. Chonsakorn, S., Srivorradatpaisan, S., & Mongkholrattanasit, R. (2018) Effects of different extraction methods on some properties of water hyacinth fiber. Journal of Natural Fibers, 1 – 11
  22. Choudhary, A. K., Chelladurai, H., Kannan, C. (2015) Optimization of combustion performance of bioethanol (water hyacinth) diesel blends on diesel engine using response surface methodology. Arabian Journal for Science and Engineering. 40, 3675−3695
  23. Deb, A., Das., S., Mache, A. & Laishram, R. (2017) A study on the mechanical behaviors of jute-polyester composites, Procedia Engineering 173, 631-638
  24. Dittenber, D. B. & Ganga Rao, H. V. (2011) Critical review of recent publications on use of natural composites in infrastructure. Composites Part A, Applied Science and Manufacturing, 43(8), 1419–1429
  25. Elanchezhiana, C., Ramnath, B.V., Ramakrishnan, G., Rajendrakumar, M., V. Naveenkumar, V., & Saravanakumar, M.K. (2018) Review on mechanical properties of natural fiber composites. Materials Today (Proceedings 5), 1785–1790
  26. European and Mediterranean Plant Protection Organization (EPPO), (2008). Data sheets on quarantine pests: Eichhornia crassipes, Bulletin OEPP/EPPO Bulletin, 38, 441–449
  27. Faruk, O., Bledzkia, A.K., Fink, H, & Sain, M. (2012) Biocomposites reinforced with natural fibers: 2000–2010, Progress in Polymer Science, 37, 1552– 159
  28. Fiore, V., T.Scalici, T., Nicoletti., F., Vitale, G., Prestipino, M., Valenzaa, A. (2016) A new eco-friendly chemical treatment of natural fibres: Effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Composites Part B: Engineering, Vol. 85, 150-160
  29. Gashti, M.P. (2013) Effect of colloidal dispersion of clay on some properties of wool fiber. Journal of Dispersion Science and Technology, 34(6), 853–858
  30. Giridharan, R., (2019). Preparation and property evaluation of Glass/Ramie fibers reinforced epoxy hybrid composites. Composites Part B: Engineering, Vol. 167, 342-345
  31. Gupta, A. & Balomajumder, C. (2015) Removal of Cr(VI) and phenol using water hyacinth from single and binary solution in the artificial photosynthesis chamber. Journal of Water Process Engineering. 7, 74−82
  32. Gao, J., Chen, L., Yan, Z., Wang, L.(2013) Effect of ionic liquid pretreatment on the composition, structure and biogas production of water hyacinth (Eichhornia cassipes). Bioresource Technology. 132, 361−364
  33. Guo, A., Sun, Z., Satyavolu, J., (2019). Impact of chemical treatment on the physiochemical and mechanical properties of kenaf fibers. Industrial Crops and Products, Volume 141, Article 111726
  34. Hamidon, M.H., Sultan, M.T.H., Ariffin, A.H., Shah, A.U.M., (2019). Effects of fibre treatment on mechanical properties of kenaf fibre reinforced composites: a review. Journal of Materials Research and Technology, Vol. 8(3), 3327-3337
  35. Hanamanagouda, Keerthi Gowda, B.S, Easwara Prasad, G.L. & Velmurugan, L. (2006) Mechanical Properties of Raw Jute Polyester Composite, International Journal of Fiber and Textile Research, 6(1), 20-24
  36. Hidayati, N., Soeprobowati, T. R., & Helmi, M., 2018, The evaluation of water hyacinth (Eichhornia crassiper) control program in Rawapening Lake, Central Java Indonesia, IOP Conf. Series: Earth and Environmental Science, 142, 1-5
  37. Huda, N.N., Nath, P., Al Amin, Md. & Rafiquzzaman, Md. (2017) Charpy Impact Behavior of Water Hyacinth Fiber Based Polymer Composite. Journal of Material Science & Manufacturing Technology, 2(2), 1- 13
  38. Indrayati, A. & Hikmah, N.I. (2018) Prediksi Sedimen Danau Rawa Pening Tahun 2020 Sebagai Dasar Reservasi Sungai Tuntang Berbasis Sistem Informasi Geografis, Prosiding Seminar Nasional Geografi UMS IX 2018. 543 – 552
  39. Jawaid, M., & Khalil, H. P. S. (2011). Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers, 86(1), 1–18
  40. Jiang, L. & Hinrichsen, G. (1999). Flax and cotton fi ber reinforced biodegradable polyester amide. Die Angewandte Makromolekulare Chemie. 268, 13-17
  41. Karyanik & Sari, N.H. (2016) Analisis sifat mekanik material komposit eceng gondok berbahan filler ampas singkong dengan matrik polyester, Jurnal Rekayasa Energi Manufaktur, Vol. 1 (1), 17-22
  42. Kabir, M.M., Wang, H., Lau, K.T. & Cardona, F. (2012), Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites: Part B, 43, 2883–2892
  43. Karina, M., Onggo, H., Syampurwadi, A, (2007) Physical and Mechanical Properties of Natural Fibers Filled Polypropylene Composites and Its Recycle, Journal of Biological Science, 7(2), 393-396
  44. Khankham, P., Nhuapeng, W. & Thamjaree, W. (2017), Fabrication and Mechanical Properties of the Biocomposites between Water Hyacinth Fiber and Paper Mulberry. Key Engineering Materials, 757, 73-77
  45. Kian, L.K., Saba, N., Jawaid, M., Sultan, M. T. H., (2019). A review on processing techniques of bast fibers nanocellulose and its polylactic acid (PLA) nanocomposites. International Journal of Biological Macromolecules, Volume 121,1314-1328
  46. Ku, H., Wang, H., Pattarachaiyakoop, N. & Trada, M. (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Composites: Part B, 42, 856–873
  47. Kuang,X., Guan, S., Rodgers, J., & Yu, C., (2017). Study on length distribution of ramie fibers, The Journal of The Textile Institute, Vol 108 (11), 1-10
  48. Madhu, P., Sanjay, M. R., Senthamaraikannan, P., Pradeep, S., Saravanakumar, S. S. &Yogesha, B., (2018) A review on synthesis and characterization of commercially available natural fibers: Part-II. Journal of Natural Fibers, 1–13
  49. Maurya, H. M., Gupta, M.K., Srivastava, R.K. & Singh, H. (2015) Study on the mechanical properties of epoxy composite using short sisal fibre, Materials Today: Proceedings, 2, 1347 – 1355
  50. Manimaran, P., Senthamaraikannan, P., Murugananthan, K., & Sanjay, M. R. (2018). Physicochemical properties of new cellulosic fibers from Azadirachta indica plant. Journal of Natural Fibers, 15(1), 29–38
  51. Mohanty, A.K., Misra, M., Hinrichsen, G., (2000). Biofibres, biodegradable polymers and biocomposites: An overview, Macromolecular Materials and Engineering, 276/277, 1-24
  52. Nam, S. dan Netravali, A.N., (2006). Green Composites. I. Physical Properties of Ramie Fibers for Environment-friendly Green Composites, Fibers and Polymers, Vol.7, No.4, 372-379
  53. Padmanabhan, R.G., Arun, N., S. Reddy, K. B. S., (2016). Investigation of Mechanical Behavior of Water Hyacinth Fiber / Polyester with Aluminium Powder Composites, International Journal of Application or Innovation in Engineering & Management, Volume 5 (2), 56-62
  54. Paridah, M. T., Basher, A. B., SaifulAzry, S., & Ahmed, Z. (2011). Retting process of some bast plant fibres and its effect on fibre quality: A review. BioResources, 6(4), 5260–5281
  55. Pickering, K.L., Efendy, M.G.A. & Le, T.M. (2016) A review of recent developments in natural fibre composites and their mechanical performance, Composites: Part A, 83, 98–112
  56. Potiyaraj, P., Panchaipech, P. & Chuayjuljt, S. (2001) Using Water-Hyacinth Fiber as a filler in natural rubber. Journal of Scientific Research, Chulalongkorn University, 26(1), 11 – 19
  57. Prasad, A.V.R., Rao, K.M. & Nagasrinivasulu, G. (2009) Mechanical properties of banana empty fruit bunch fibre reinforced polyester composites. Indian Journal of Fibre & Textile Research, 4, 162–167
  58. Prasetyaningrum, A., Rokhati, N., & Rahayu, A. K. (2009) Optimasi proses pembuatan serat eceng gondok untuk menghasilkan komposit serat dengan kualitas fisik dan mekanik yang tinggi, Riptek, Vol.3(1), 45 – 50
  59. Rafiquzzaman, Md., Imran Hossain, Md & Akydur Rahman (2017) Mechanical properties of agricultural byproduct polymer composites. Journal of Material Science and Manufacturing Technology, 2(2), 1-14
  60. Rani, S., Sumanjit, K., Mahajan, R. K. (2015) Comparative study of surface modified carbonized Eichhornia crassipes for adsorption of dye safranin. Separation Science and Technology. 50, 2436−2477
  61. Ramirez, N.F., Hernandez, Y.S., Cruz de Leon, J., Vasquez Garcia, S. R., Domratcheva Lvova, L., & Garcia Gonzalez, L., (2015). Composites from Water Hyacinth (eichhornea crassipe) and polyester resin, Fibers and Polymers, Vol.16(1), 196-200
  62. Ribeiro, A., Pochart, P., Day, A., Mennuni, S., Bono, P., & Baret, J. L. (2015). Microbial diversity observed during hemp retting. Applied Microbiology and Biotechnology, 99(10), 4471–4484
  63. Romanova, T. E.; Shuvaeva, O. V.; Belchenko, L. A. (2016). Phytoextraction of trace elements by water hyacinth in contaminated area of gold mine tailing. International Journal of Phytoremediation. 18 (2), 190−194
  64. Romanzini, D., Junior, H.L.O, Amico, S.C., & Zattera, A.J. (2012) Preparation and characterization of ramie-glass fiber reinforced polymer matrix hybrid composites, Materials Research, 15(3): 415-420
  65. Saha, M., (2011) Mechanical characterization of water hyacinth reinforced polypropylene composites, thesis Master Of Science In Mechanical Engineering, Department Of Mechanical Engineering Bangladesh University Of Engineering And Technology
  66. Salas-Ruiz, A. & Barbero-Barrera, M. (2019) Performance assessment of water hyacinth–cement composite. Construction and Building Materials, 211, 395–407
  67. Sanjay, M. R., & Siengchin, S. (2018). Natural fibers as perspective materials. KMUTNB: International Journal of Applied Science and Technology, 11, 233
  68. Sanjay, M. R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., & Pradeep, S. (2018). Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 172, 566–581
  69. Sanjay, M.R., Siengchin, S, Parameswaranpillai, J., Jawaid, M., Catalin Iulian Pruncu, C.I. & Khan, A., 2019, A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydrate Polymers, 207, 108–121
  70. Sapci, Z. (2013) The effect of microwave pretreatment on biogas production from agricultural straws, Bioresource Technology., 128, 487–494
  71. Saputra, A.H., Difandra, A. & Pitaloka, A.B. (2013) The effect of surface treatment on composites of water hyacinth natural fiber reinforced epoxy resin. Advanced Materials Research, 651, 480-485
  72. Siengchin, S., 2017. Editorial corner–a personal view Potential use of’green’composites in automotive applications. eXPRESS Polymer Letters, Vol. 11(8), 600-600
  73. Simanjuntak, M.P (2013) Sifat mekanik komposit terhadap fraksi volume serat eceng gondok bermatriks polyester, Jurnal Einstein, Vol. 1(2), 76-87
  74. Simbolon, D. H. (2018) Sifat mekanik komposit polietilena daur ulang dengan filler serat eceng gondok, Prosiding Simposium Fisika Nasional(SFN-XXXI), Medan, 19 September 2018
  75. Simonassi, N. T., Pereira, A. C., Monteiro, S. N., Margem, F. M., Rodríguez, R. J. S., Deus, J. F. de, & Drelich, J. (2017). Reinforcement of polyester with renewable ramie fibers. Materials Research, 20(2), 51–59
  76. Sindhu, R., Binod, P., Pandey, A., Madhavan, A., Alphonsa, J.A., Vivek, N., Gnansounou, E., Castro, E. & Faraco, V. (2017) Water hyacinth a potential source for value addition: an overview. Bioresource Technology, 230, 152-162
  77. Sivasankari. B. & David Ravindran.A. (2006) A study on chemical analysis of water hyacinth (eichornia crassipes), water lettuce (pistia stratiotes). International Journal of Innovative Research in Science, Engineering and Technology. 5(10), 17566 – 17570
  78. Sood, M. & Dwivedi, G. (2018) Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egyptian Journal of Petroleum, 27, 775–783
  79. Sundari, M. T. dan Ramesh, A., (2012) Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth—Eichhornia crassipes, Carbohydrate Polymers 87, 1701– 1705
  80. Supri, A.G. & Lim, B.Y. (2009) Effect of treated and untreated filler loading on the mechanical, morphological, and water absorption properties of water hyacinth fibers-low density polyethylene composites. Journal of Physical Science, 20(2), 85–96
  81. Supri, A.G., & Ismail, H. (2010) The Effect of NCO-Polyol on the Properties of low-density polyethylene/water hyacinth fiber (eichhornia crassiper), Composites Polymer-Plastics Technology and Engineering, 49: 766–771
  82. Supri, A.G. & Ismail, H. (2011). The effect of isophorone diisocyanate-polyhydroxyl groups modified water hyacinth fibers (eichhornia crassiper) on properties of low density polyethylene/ acrylonitrile butadiene styrene (LDPE/ABS) Composites, Polymer-Plastics Technology and Engineering, 50, 113–120
  83. Supri, A.G., Tan, S.J., Ismail, H., The, P.L. 2013, Enhancing interfacial adhesion performance by using poly(vinyl alcohol) in (low-density polyethylene)/ (natural rubber)/(water hyacinth fiber) composites, Journal Of Vinyl & Additive Technology, 47-54
  84. Suryana, D., Junaidi, A., & Rizki, M. (2018) Pengaruh komposisi komposit serat-serat eceng gondok dan pasir silika terhadap uji impact dan uji tarik untuk point panjat dinding, Jurnal Austenit, 10(2), 15-20
  85. Takagi, H. & Ichihara, Y. (2004). Effect of Fiber Length on mechanical properties of green composites using a starch-based resin and short bamboo fibers. JSME International Journal, 47(4), 551-555
  86. Tan, S. J., Supri, A. G., Chong, K. M. (2015) Properties of recycled high density polyethylene/water hyacinth fiber composites: Effect of different concentration of compatibilizer. Polymer Bulletin. 72, 2019−2031
  87. Tan, S. J., & Supri, A. G. (2016). Properties of low-density polyethylene/natural rubber/water hyacinth fiber composites: the effect of alkaline treatment. Polymer Bulletin, 73(2), 539–557
  88. Teygeler, R. (2000) Water hyacinth paper. Contribution to a sustainable future, Paper and Water. Gentenaar & Torley Publishers, 168-188
  89. Thakur, V. K., & Thakur, M. K. (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers, 109, 102–117
  90. Thomas, M. G., Abraham, E., Jyotishkumar, P., Maria, H. J., Pothen, L. A. & Thomas, S. (2015) Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization. International Journal of Biological Macromolecules, 81, 768–777
  91. Thi, B. T. N., Thanh, L. H. V., Phuong Lan, T. N., Dieu Thuy, N. T., Ju, Yi-Hsu, (2017), Comparison of some pretreatment methods on cellulose recovery from water hyacinth (eichhornia crassipe). Journal of Clean Energy Technologies, Vol. 5 (4), 274-279
  92. Ticoalu, A., Aravinthan, T. & Cardona, F., (2010). A review of current development in natural fiber composites for structural and infrastructure applications, Southern Region Engineering Conference, 11-12 November 2010, Toowoomba, Australia
  93. Tumolva, T., Ortenero, J. & Kubouchi, M. (2013) Characterization and treatment of water hyacinth fibers for NFRP composites, The 19th International Conference on Composite Materials, July 28 to August 2, 2013, Montreal, Canada
  94. Umardani, Y., & Pramono, C. (2009) Pengaruh larutan alkali dan etanol terhadap kekuatan tarik serat enceng gondok dan kompatibilitas serat enceng gondok pada matrik unsaturated polyester Yukalac tipe 157 BQTN-EX, Rotasi, Vol 11(2), 24-29
  95. Valadez-Gonzalez, A., Cervantes-Uc, J. M., Olayo, R., Herrera-Franco, P. J. (1999) Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Composites Part B: Engineering, Vol. 30 (3), 309-320
  96. Varghese, A. M., & Mittal, V. (2018) Surface modification of natural fibers. Biodegradable and Biocompatible Polymer Composites, 5, 115–155
  97. Venkateshwaran, N., Elaya Perumal, A. & Jagatheeshwaran, M.S. (2011). Effect of fiber length and fiber content on mechanical properties of banana fiber/epoxy composite, Journal of Reinforced Plastics and Composites, 30(19), 1621–1627
  98. Verma, R. dan Shukla, M., (2018). Characterization of mechanical properties of short kenaf fiber-hdpe green composites. Materials Today: Proceedings, Vol. 5(2), Part 1, 3257-3264
  99. Widhata, D., Ismail, R., Sulardjaka, (2019). Water hyacinth (eceng gondok) as fibre reinforcement composite for prosthetics socket, IOP Conf. Series: Materials Science and Engineering 598, 012127
  100. Wijayanti, M., Yahya, I., Harjana, Kristiani, R. & Muqowi, E. (2015) Analisis kinerja akustik panel gedek bambu dengan sisipan komposit eceng gondok, Jurnal Fisika dan Aplikasinya, Vol. 11 (2), 86-90
  101. Yuan, Jian-Min., Feng, Yan-Rong., He, Li-Ping., (2016). Effect of thermal treatment on properties of ramie fibers, Polymer Degradation and Stability, Vol.133, 303-311
  102. Yusof, Y., Yahya, S.A., Adam, A., (2015). Novel technology for sustainable pineapple leaf fibers productions. Procedia CIRP, Vol. 26, 756-760
  103. Zini, E., dan Scandola, M. (2011). Green composites: An overview. Polymer Composites, 32(12), 1905–1915
  104. Zwane, P.E., Ndlovu, T., Mkhonta, T. T., Masarirambi, M. T., Thwala, J. M. (2019) Effects of enzymatic treatment of sisal fibres on tensile strength and morphology, Scientific African, Vol. 6, Article e00136

Last update: 2021-03-02 21:56:33

No citation recorded.

Last update: 2021-03-02 21:56:34

No citation recorded.