Peningkatan Kekuatan Sifat Mekanis Komposit Serat Alam menggunakan Serat Enceng Gondok (Tinjauan Pustaka)

*Sulardjaka Sulardjaka scopus  -  Departemen Teknik Mesin, Universitas Diponegoro, Indonesia
Sri Nugroho scopus  -  Departemen Teknik Mesin, Universitas Diponegoro, Indonesia
Rifky Ismail scopus  -  Departemen Teknik Mesin, Universitas Diponegoro, Indonesia
Received: 28 May 2019; Revised: 3 Feb 2020; Accepted: 1 May 2020; Published: 31 May 2020.
Open Access
Citation Format:
Article Info
Section: Artikel
Language: ID
Statistics: 101 54
Abstract

Enceng gondok (Eichhornia crassipes) merupakan tumbuhan perairan yang memiliki laju pertumbuhan cepat. Pertumbuhan populasi yang tinggi menyebabkan berbagai persoalan yang menyangkut gangguan keseimbangan ekosistem, gangguan irigasi dan sedimentasi. Enceng gondok memiliki potensi untuk diaplikasikan dalam pembuatan komposit serat alam. Serat selulosa dari tanaman enceng gondok dapat dimanfaatkan sebagai penguat pada pembuatan komposit. Kajian pustaka ini bertujuan untuk memberikan kajian potensi pengembangan pemanfaatan serat enceng gondok dalam pembuatan komposit serat alam. Pemanfaatan serat enceng gondok sebagai penguat komposit untuk aplikasi komersial masih sangat terbatas. Hal ini disebabkan sifat mekanis yang dihasilkan masih rendah. Untuk mendapatkan kekuatan komposit yang semakin meningkat, diperlukan penerapan dan optimasi parameter proses pengolahan serat, perlakuan awal serat dalam pembuatan komposit serat enceng gondok. Kajian pustaka ini selain memberikan kajian literatur tentang sifat fisis dan mekanis komposit serat enceng gondok yang telah dihasilkan juga memberikan kajian literatur tentang faktor yang mempengaruhi sifat serat alam, sifat kimia, sifat fisis, sifat mekanis, proses pembuatan serat, dan perlakuan serat sehingga hasil penelitian tersebut dapat digunakan rujukan dalam pengembangan komposit dengan penguat serat enceng gondok.

Keywords: serat enceng gondok; komposit serat alam; sifat mekanis; sifat fisis; sifat kimia; penguatan

Article Metrics:

  1. Abdel-Fattah, A.F., & Abdel-Naby, M.A. (2012) Pretreatment and enzymic saccharification of water hyacinth cellulose. Carbohydrate Polymers, 87, 2109–2113.
  2. Abral, H., Putra, H., Sapuan, S.M., & Ishak, M.R. (2013) Effect of alkalization on mechanical properties of water hyacinth fibers-unsaturated polyester composites, Polymer-Plastics Technology and Engineering, 52, 446–451.
  3. Abral, H., Kadriadi, D., Rodianus, A., Mastariyanto, P., Ilhamdi, S., Sapuan, A.S.M., & Ishak, M.R. (2014) Mechanical properties of water hyacinth fibers – polyester composites before and after immersion in water. Materials and Design. 58, 125–129.
  4. Abral, H., Dalimunthe, M.H., Hartono, J., Efendi, R.P., Asrofi, M., Sugiarti, E., SM Sapuan, S.M., Park, J.W., Kim, H. (2018) Characterization of tapioca starch biopolymer composites reinforced with micro scale water hyacinth fibers. Starch - Stärke, 70(7-8).
  5. Aji, T.A., Purwanto, H., & Respati, S. M. B. (2018) Pengaruh ketebalan komposit matrik resin dengan penguat kulit eceng gondok (eichhornia crassipes) yang dianyam terhadap kemampuan balistik, Momentum, Vol. 14(1), 75-79.
  6. Aleño, J. B., Ramos, H. J. & Jose, W. I. (2014) Determination of Properties of yarns made from Water Hyacinth and pinneapple indigenous fibers treated using plasma enhaced chemical vapour deposition, 5th International Conference on Chemical, Ecology and Environmental Sciences (ICCEES'2014) Jan. 13-14, Penang (Malaysia).
  7. Amanda, P. (2011) 2030, Rawa Pening Bebas Eceng Gondok,", https://regional.kompas.com/read/
  8. /08/03/1914388/2030.Rawa.Pening.Bebas.Eceng.Gondok., diakses 10 April 2019.
  9. Asrofi, M. , Abral, H., Kasim, A. & Pratoto, A., (2017), XRD and FTIR Studies of Nanocrystalline Cellulose from Water Hyacinth (Eichornia crassipes) Fiber, Journal of Metastable and Nanocrystalline Materials, Vo. 29., 9-16.
  10. Asrofi, M., Abral, H., Kasim. A., Pratoto, A., Mahardika, M., & Hafizulhaq, F. (2018) Mechanical Properties of a Water Hyacinth Nanofiber Cellulose Reinforced Thermoplastic Starch Bionanocomposite: Effect of Ultrasonic Vibration during Processing. Fibers, 6(40), 1 – 9.
  11. Asrofi, M., Abral, H., Putra, Y.K., Sapuan, S.M. & Hyun-Joong Kim. (2018) Effect of duration of sonication during gelatinization on properties of tapioca starch water hyacinth fiber biocomposite. International Journal of Biological Macromolecules, 108, 167–176.
  12. Athijayamani, A., Thiruchitrambalam, M., Manikandan, V., & Pazhanivel, D. (2009) Mechanical properties of natural fibers reinforced polyester hybrid composite, Int J Plast Technol, 13(1), 1-12.
  13. Bahra, M.S., Gupta, V. K. & Aggarwal, L. (2017). Effect of Fibre Content on Mechanical Properties and Water Absorption Behaviour of Pineapple/HDPE Composite. Materials Today: Proceedings, Vol 4 (2), Part A, 3207-3214.
  14. Balachandar, M., Vijaya Ramnath, B., Barath, R. & Bharath Sankar, S., (2019) Mechanical Characterization of Natural Fiber Polymer Composites. Materials Today: Proceedings, Vol. 6 (2), 1006-1012.
  15. Baley, C., Gomina, M., Breard, J., Bourmauda, A., & Davies, P. (2019). Variability of mechanical properties of flax fibres for composite reinforcement. A review., Industrial Crops & Products, Article In Press Available online 22 November 2019.
  16. Bhuvaneshwari, M. & Sangeetha (2017). Development of Water Hyacinth nonwoven fabrics for thermal insulation. Journal on Future Engineering & Technology, 13(1), 22 – 29.
  17. Bismarck, A., Mishra, S., & Lampke, T., (2005). Plant fibers as reinforcement for green composites. In A. K. Mohanty, M. Misra, & L. T. Drzal (Eds.), Natural Fibers, Biopolymers, and Biocomposites (p. 38). Boca Raton, FL: CRC Press.
  18. Bordoloi, S., Kashyap, V., Garg, A., Sreedeep, S., Wei, L. & Andriyas, S. (2018) Measurement of mechanical characteristics of fiber from a novel invasive weed: A comprehensive comparison with fibers from agricultural crops, Measurement, 113, 62–70.
  19. Cai, M., Takagi, H., Nakagaito, A.N., Yan Li & Waterhouse, G.I.N., (2016). Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, Vol. 90, 589-597.
  20. Cheng, S., Lau, K., Liu,T, Zhao,Y, Lam, P.M. & Yin, Y. (2009) Mechanical and thermal properties of chicken feather fiber/PLA green composites. Composites Part B, 40(7), 650–654.
  21. Chonsakorn, S., Srivorradatpaisan, S., & Mongkholrattanasit, R. (2018) Effects of different extraction methods on some properties of water hyacinth fiber. Journal of Natural Fibers, 1 – 11.
  22. Choudhary, A. K., Chelladurai, H., Kannan, C. (2015) Optimization of combustion performance of bioethanol (water hyacinth) diesel blends on diesel engine using response surface methodology. Arabian Journal for Science and Engineering. 40, 3675−3695.
  23. Deb, A., Das., S., Mache, A. & Laishram, R. (2017) A study on the mechanical behaviors of jute-polyester composites, Procedia Engineering 173, 631-638.
  24. Dittenber, D. B. & Ganga Rao, H. V. (2011) Critical review of recent publications on use of natural composites in infrastructure. Composites Part A, Applied Science and Manufacturing, 43(8), 1419–1429.
  25. Elanchezhiana, C., Ramnath, B.V., Ramakrishnan, G., Rajendrakumar, M., V. Naveenkumar, V., & Saravanakumar, M.K. (2018) Review on mechanical properties of natural fiber composites. Materials Today (Proceedings 5), 1785–1790.
  26. European and Mediterranean Plant Protection Organization (EPPO), (2008). Data sheets on quarantine pests: Eichhornia crassipes, Bulletin OEPP/EPPO Bulletin, 38, 441–449
  27. Faruk, O., Bledzkia, A.K., Fink, H, & Sain, M. (2012) Biocomposites reinforced with natural fibers: 2000–2010, Progress in Polymer Science, 37, 1552– 159.
  28. Fiore, V., T.Scalici, T., Nicoletti., F., Vitale, G., Prestipino, M., Valenzaa, A. (2016) A new eco-friendly chemical treatment of natural fibres: Effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Composites Part B: Engineering, Vol. 85, 150-160.
  29. Gashti, M.P. (2013) Effect of colloidal dispersion of clay on some properties of wool fiber. Journal of Dispersion Science and Technology, 34(6), 853–858.
  30. Giridharan, R., (2019). Preparation and property evaluation of Glass/Ramie fibers reinforced epoxy hybrid composites. Composites Part B: Engineering, Vol. 167, 342-345.
  31. Gupta, A. & Balomajumder, C. (2015) Removal of Cr(VI) and phenol using water hyacinth from single and binary solution in the artificial photosynthesis chamber. Journal of Water Process Engineering. 7, 74−82.
  32. Gao, J., Chen, L., Yan, Z., Wang, L.(2013) Effect of ionic liquid pretreatment on the composition, structure and biogas production of water hyacinth (Eichhornia cassipes). Bioresource Technology. 132, 361−364.
  33. Guo, A., Sun, Z., Satyavolu, J., (2019). Impact of chemical treatment on the physiochemical and mechanical properties of kenaf fibers. Industrial Crops and Products, Volume 141, Article 111726.
  34. Hamidon, M.H., Sultan, M.T.H., Ariffin, A.H., Shah, A.U.M., (2019). Effects of fibre treatment on mechanical properties of kenaf fibre reinforced composites: a review. Journal of Materials Research and Technology, Vol. 8(3), 3327-3337.
  35. Hanamanagouda, Keerthi Gowda, B.S, Easwara Prasad, G.L. & Velmurugan, L. (2006) Mechanical Properties of Raw Jute Polyester Composite, International Journal of Fiber and Textile Research, 6(1), 20-24.
  36. Hidayati, N., Soeprobowati, T. R., & Helmi, M., 2018, The evaluation of water hyacinth (Eichhornia crassiper) control program in Rawapening Lake, Central Java Indonesia, IOP Conf. Series: Earth and Environmental Science, 142, 1-5
  37. Huda, N.N., Nath, P., Al Amin, Md. & Rafiquzzaman, Md. (2017) Charpy Impact Behavior of Water Hyacinth Fiber Based Polymer Composite. Journal of Material Science & Manufacturing Technology, 2(2), 1- 13.
  38. Indrayati, A. & Hikmah, N.I. (2018) Prediksi Sedimen Danau Rawa Pening Tahun 2020 Sebagai Dasar Reservasi Sungai Tuntang Berbasis Sistem Informasi Geografis, Prosiding Seminar Nasional Geografi UMS IX 2018. 543 – 552.
  39. Jawaid, M., & Khalil, H. P. S. (2011). Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers, 86(1), 1–18.
  40. Jiang, L. & Hinrichsen, G. (1999). Flax and cotton fi ber reinforced biodegradable polyester amide. Die Angewandte Makromolekulare Chemie. 268, 13-17.
  41. Karyanik & Sari, N.H. (2016) Analisis sifat mekanik material komposit eceng gondok berbahan filler ampas singkong dengan matrik polyester, Jurnal Rekayasa Energi Manufaktur, Vol. 1 (1), 17-22.
  42. Kabir, M.M., Wang, H., Lau, K.T. & Cardona, F. (2012), Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites: Part B, 43, 2883–2892.
  43. Karina, M., Onggo, H., Syampurwadi, A, (2007) Physical and Mechanical Properties of Natural Fibers Filled Polypropylene Composites and Its Recycle, Journal of Biological Science, 7(2), 393-396.
  44. Khankham, P., Nhuapeng, W. & Thamjaree, W. (2017), Fabrication and Mechanical Properties of the Biocomposites between Water Hyacinth Fiber and Paper Mulberry. Key Engineering Materials, 757, 73-77.
  45. Kian, L.K., Saba, N., Jawaid, M., Sultan, M. T. H., (2019). A review on processing techniques of bast fibers nanocellulose and its polylactic acid (PLA) nanocomposites. International Journal of Biological Macromolecules, Volume 121,1314-1328.
  46. Ku, H., Wang, H., Pattarachaiyakoop, N. & Trada, M. (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Composites: Part B, 42, 856–873.
  47. Kuang,X., Guan, S., Rodgers, J., & Yu, C., (2017). Study on length distribution of ramie fibers, The Journal of The Textile Institute, Vol 108 (11), 1-10.
  48. Madhu, P., Sanjay, M. R., Senthamaraikannan, P., Pradeep, S., Saravanakumar, S. S. &Yogesha, B., (2018) A review on synthesis and characterization of commercially available natural fibers: Part-II. Journal of Natural Fibers, 1–13.
  49. Maurya, H. M., Gupta, M.K., Srivastava, R.K. & Singh, H. (2015) Study on the mechanical properties of epoxy composite using short sisal fibre, Materials Today: Proceedings, 2, 1347 – 1355.
  50. Manimaran, P., Senthamaraikannan, P., Murugananthan, K., & Sanjay, M. R. (2018). Physicochemical properties of new cellulosic fibers from Azadirachta indica plant. Journal of Natural Fibers, 15(1), 29–38.
  51. Mohanty, A.K., Misra, M., Hinrichsen, G., (2000). Biofibres, biodegradable polymers and biocomposites: An overview, Macromolecular Materials and Engineering, 276/277, 1-24.
  52. Nam, S. dan Netravali, A.N., (2006). Green Composites. I. Physical Properties of Ramie Fibers for Environment-friendly Green Composites, Fibers and Polymers, Vol.7, No.4, 372-379.
  53. Padmanabhan, R.G., Arun, N., S. Reddy, K. B. S., (2016). Investigation of Mechanical Behavior of Water Hyacinth Fiber / Polyester with Aluminium Powder Composites, International Journal of Application or Innovation in Engineering & Management, Volume 5 (2), 56-62.
  54. Paridah, M. T., Basher, A. B., SaifulAzry, S., & Ahmed, Z. (2011). Retting process of some bast plant fibres and its effect on fibre quality: A review. BioResources, 6(4), 5260–5281.
  55. Pickering, K.L., Efendy, M.G.A. & Le, T.M. (2016) A review of recent developments in natural fibre composites and their mechanical performance, Composites: Part A, 83, 98–112.
  56. Potiyaraj, P., Panchaipech, P. & Chuayjuljt, S. (2001) Using Water-Hyacinth Fiber as a filler in natural rubber. Journal of Scientific Research, Chulalongkorn University, 26(1), 11 – 19.
  57. Prasad, A.V.R., Rao, K.M. & Nagasrinivasulu, G. (2009) Mechanical properties of banana empty fruit bunch fibre reinforced polyester composites. Indian Journal of Fibre & Textile Research, 4, 162–167.
  58. Prasetyaningrum, A., Rokhati, N., & Rahayu, A. K. (2009) Optimasi proses pembuatan serat eceng gondok untuk menghasilkan komposit serat dengan kualitas fisik dan mekanik yang tinggi, Riptek, Vol.3(1), 45 – 50.
  59. Rafiquzzaman, Md., Imran Hossain, Md & Akydur Rahman (2017) Mechanical properties of agricultural byproduct polymer composites. Journal of Material Science and Manufacturing Technology, 2(2), 1-14.
  60. Rani, S., Sumanjit, K., Mahajan, R. K. (2015) Comparative study of surface modified carbonized Eichhornia crassipes for adsorption of dye safranin. Separation Science and Technology. 50, 2436−2477.
  61. Ramirez, N.F., Hernandez, Y.S., Cruz de Leon, J., Vasquez Garcia, S. R., Domratcheva Lvova, L., & Garcia Gonzalez, L., (2015). Composites from Water Hyacinth (eichhornea crassipe) and polyester resin, Fibers and Polymers, Vol.16(1), 196-200.
  62. Ribeiro, A., Pochart, P., Day, A., Mennuni, S., Bono, P., & Baret, J. L. (2015). Microbial diversity observed during hemp retting. Applied Microbiology and Biotechnology, 99(10), 4471–4484.
  63. Romanova, T. E.; Shuvaeva, O. V.; Belchenko, L. A. (2016). Phytoextraction of trace elements by water hyacinth in contaminated area of gold mine tailing. International Journal of Phytoremediation. 18 (2), 190−194.
  64. Romanzini, D., Junior, H.L.O, Amico, S.C., & Zattera, A.J. (2012) Preparation and characterization of ramie-glass fiber reinforced polymer matrix hybrid composites, Materials Research, 15(3): 415-420.
  65. Saha, M., (2011) Mechanical characterization of water hyacinth reinforced polypropylene composites, thesis Master Of Science In Mechanical Engineering, Department Of Mechanical Engineering Bangladesh University Of Engineering And Technology.
  66. Salas-Ruiz, A. & Barbero-Barrera, M. (2019) Performance assessment of water hyacinth–cement composite. Construction and Building Materials, 211, 395–407.
  67. Sanjay, M. R., & Siengchin, S. (2018). Natural fibers as perspective materials. KMUTNB: International Journal of Applied Science and Technology, 11, 233.
  68. Sanjay, M. R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., & Pradeep, S. (2018). Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 172, 566–581.
  69. Sanjay, M.R., Siengchin, S, Parameswaranpillai, J., Jawaid, M., Catalin Iulian Pruncu, C.I. & Khan, A., 2019, A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydrate Polymers, 207, 108–121.
  70. Sapci, Z. (2013) The effect of microwave pretreatment on biogas production from agricultural straws, Bioresource Technology., 128, 487–494.
  71. Saputra, A.H., Difandra, A. & Pitaloka, A.B. (2013) The effect of surface treatment on composites of water hyacinth natural fiber reinforced epoxy resin. Advanced Materials Research, 651, 480-485.
  72. Siengchin, S., 2017. Editorial corner–a personal view Potential use of’green’composites in automotive applications. eXPRESS Polymer Letters, Vol. 11(8), 600-600.
  73. Simanjuntak, M.P (2013) Sifat mekanik komposit terhadap fraksi volume serat eceng gondok bermatriks polyester, Jurnal Einstein, Vol. 1(2), 76-87.
  74. Simbolon, D. H. (2018) Sifat mekanik komposit polietilena daur ulang dengan filler serat eceng gondok, Prosiding Simposium Fisika Nasional(SFN-XXXI), Medan, 19 September 2018.
  75. Simonassi, N. T., Pereira, A. C., Monteiro, S. N., Margem, F. M., Rodríguez, R. J. S., Deus, J. F. de, & Drelich, J. (2017). Reinforcement of polyester with renewable ramie fibers. Materials Research, 20(2), 51–59.
  76. Sindhu, R., Binod, P., Pandey, A., Madhavan, A., Alphonsa, J.A., Vivek, N., Gnansounou, E., Castro, E. & Faraco, V. (2017) Water hyacinth a potential source for value addition: an overview. Bioresource Technology, 230, 152-162.
  77. Sivasankari. B. & David Ravindran.A. (2006) A study on chemical analysis of water hyacinth (eichornia crassipes), water lettuce (pistia stratiotes). International Journal of Innovative Research in Science, Engineering and Technology. 5(10), 17566 – 17570.
  78. Sood, M. & Dwivedi, G. (2018) Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egyptian Journal of Petroleum, 27, 775–783.
  79. Sundari, M. T. dan Ramesh, A., (2012) Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth—Eichhornia crassipes, Carbohydrate Polymers 87, 1701– 1705.
  80. Supri, A.G. & Lim, B.Y. (2009) Effect of treated and untreated filler loading on the mechanical, morphological, and water absorption properties of water hyacinth fibers-low density polyethylene composites. Journal of Physical Science, 20(2), 85–96.
  81. Supri, A.G., & Ismail, H. (2010) The Effect of NCO-Polyol on the Properties of low-density polyethylene/water hyacinth fiber (eichhornia crassiper), Composites Polymer-Plastics Technology and Engineering, 49: 766–771.
  82. Supri, A.G. & Ismail, H. (2011). The effect of isophorone diisocyanate-polyhydroxyl groups modified water hyacinth fibers (eichhornia crassiper) on properties of low density polyethylene/ acrylonitrile butadiene styrene (LDPE/ABS) Composites, Polymer-Plastics Technology and Engineering, 50, 113–120.
  83. Supri, A.G., Tan, S.J., Ismail, H., The, P.L. 2013, Enhancing interfacial adhesion performance by using poly(vinyl alcohol) in (low-density polyethylene)/ (natural rubber)/(water hyacinth fiber) composites, Journal Of Vinyl & Additive Technology, 47-54.
  84. Suryana, D., Junaidi, A., & Rizki, M. (2018) Pengaruh komposisi komposit serat-serat eceng gondok dan pasir silika terhadap uji impact dan uji tarik untuk point panjat dinding, Jurnal Austenit, 10(2), 15-20.
  85. Takagi, H. & Ichihara, Y. (2004). Effect of Fiber Length on mechanical properties of green composites using a starch-based resin and short bamboo fibers. JSME International Journal, 47(4), 551-555.
  86. Tan, S. J., Supri, A. G., Chong, K. M. (2015) Properties of recycled high density polyethylene/water hyacinth fiber composites: Effect of different concentration of compatibilizer. Polymer Bulletin. 72, 2019−2031.
  87. Tan, S. J., & Supri, A. G. (2016). Properties of low-density polyethylene/natural rubber/water hyacinth fiber composites: the effect of alkaline treatment. Polymer Bulletin, 73(2), 539–557.
  88. Teygeler, R. (2000) Water hyacinth paper. Contribution to a sustainable future, Paper and Water. Gentenaar & Torley Publishers, 168-188.
  89. Thakur, V. K., & Thakur, M. K. (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers, 109, 102–117.
  90. Thomas, M. G., Abraham, E., Jyotishkumar, P., Maria, H. J., Pothen, L. A. & Thomas, S. (2015) Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization. International Journal of Biological Macromolecules, 81, 768–777.
  91. Thi, B. T. N., Thanh, L. H. V., Phuong Lan, T. N., Dieu Thuy, N. T., Ju, Yi-Hsu, (2017), Comparison of some pretreatment methods on cellulose recovery from water hyacinth (eichhornia crassipe). Journal of Clean Energy Technologies, Vol. 5 (4), 274-279.
  92. Ticoalu, A., Aravinthan, T. & Cardona, F., (2010). A review of current development in natural fiber composites for structural and infrastructure applications, Southern Region Engineering Conference, 11-12 November 2010, Toowoomba, Australia.
  93. Tumolva, T., Ortenero, J. & Kubouchi, M. (2013) Characterization and treatment of water hyacinth fibers for NFRP composites, The 19th International Conference on Composite Materials, July 28 to August 2, 2013, Montreal, Canada.
  94. Umardani, Y., & Pramono, C. (2009) Pengaruh larutan alkali dan etanol terhadap kekuatan tarik serat enceng gondok dan kompatibilitas serat enceng gondok pada matrik unsaturated polyester Yukalac tipe 157 BQTN-EX, Rotasi, Vol 11(2), 24-29.
  95. Valadez-Gonzalez, A., Cervantes-Uc, J. M., Olayo, R., Herrera-Franco, P. J. (1999) Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Composites Part B: Engineering, Vol. 30 (3), 309-320.
  96. Varghese, A. M., & Mittal, V. (2018) Surface modification of natural fibers. Biodegradable and Biocompatible Polymer Composites, 5, 115–155.
  97. Venkateshwaran, N., Elaya Perumal, A. & Jagatheeshwaran, M.S. (2011). Effect of fiber length and fiber content on mechanical properties of banana fiber/epoxy composite, Journal of Reinforced Plastics and Composites, 30(19), 1621–1627.
  98. Verma, R. dan Shukla, M., (2018). Characterization of mechanical properties of short kenaf fiber-hdpe green composites. Materials Today: Proceedings, Vol. 5(2), Part 1, 3257-3264.
  99. Widhata, D., Ismail, R., Sulardjaka, (2019). Water hyacinth (eceng gondok) as fibre reinforcement composite for prosthetics socket, IOP Conf. Series: Materials Science and Engineering 598, 012127.
  100. Wijayanti, M., Yahya, I., Harjana, Kristiani, R. & Muqowi, E. (2015) Analisis kinerja akustik panel gedek bambu dengan sisipan komposit eceng gondok, Jurnal Fisika dan Aplikasinya, Vol. 11 (2), 86-90.
  101. Yuan, Jian-Min., Feng, Yan-Rong., He, Li-Ping., (2016). Effect of thermal treatment on properties of ramie fibers, Polymer Degradation and Stability, Vol.133, 303-311.
  102. Yusof, Y., Yahya, S.A., Adam, A., (2015). Novel technology for sustainable pineapple leaf fibers productions. Procedia CIRP, Vol. 26, 756-760.
  103. Zini, E., dan Scandola, M. (2011). Green composites: An overview. Polymer Composites, 32(12), 1905–1915.
  104. Zwane, P.E., Ndlovu, T., Mkhonta, T. T., Masarirambi, M. T., Thwala, J. M. (2019) Effects of enzymatic treatment of sisal fibres on tensile strength and morphology, Scientific African, Vol. 6, Article e00136