skip to main content

Analysis of Casting Defects, Tensile Strength, and Hardness of AlSi Alloy Castings from Sand Casting Method with Bangkalan Local Clay Binder Variations

Analisis Cacat Pengecoran, Kekuatan Tarik, dan Kekerasan Logam Paduan AlSi Hasil Pengecoran Metode Sand Casting dengan Variasi Pengikat Lempung Lokal Bangkalan

*Imam Muhtarom  -  Department of Mechanical Engineering, Yogyakarta State University, Indonesia
Dwi Rahdiyanta  -  Department of Mechanical Engineering, Yogyakarta State University, Indonesia
Open Access Copyright (c) 2023 TEKNIK

Citation Format:
Abstract
This study aims to determine the casting defects, tensile strength, and hardness of the AlSi alloy obtained in the Sand Casting method with Bangkalan local clay as a binder. This experimental research uses the one-shot case study method in which a group of samples is given treatment. Furthermore, the research results were analyzed and described descriptively. This study uses three independent variables and three dependent variables. The independent variable is the local Bangkalan clay binder with varying percentages of 6%, 9%, and 12%, while the dependent variable is casting defects, tensile strength, and metal hardness. The research results show that the lowest casting defects are obtained on the AlSi metal surface, with a variation in the percentage of the binder of 12% with a total of 76 hole defects and 80-grain structure defects. At the same time, the highest tensile strength value is obtained in AlSi metal with a binder variation of 12% with a value of 11.188 kgf/mm². The highest hardness value is also obtained in AlSi metal, with a binder variation of 12% with a value of 131.9 HV. This study concludes that using local Bangkalan clay binder in 12% is the best sand mold binder variation compared to 6% and 9% binder variations.
Fulltext View|Download
Keywords: metal casting; AlSi; Bangkalan local clay; casting defects; hardness; tensile strength
Funding: Universitas Negeri Yogyakarta

Article Metrics:

  1. American Society for Testing Materials. (2008). Standard Test Methods and Definitions for Mechanical Testing of Steel Products (p. 5). West Conshohocken: ASTM International
  2. Ayu, M.H.M., Fuad, A., Alfiah, S.I., & Wonorahardjo, S. (2015). Sintesa Hydroxyapatite (Ca10(PO4)6 (OH)2) Berbasis Batu Kapur. Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 5(1), 15–20
  3. Budiyono, A., Widayat, W. & Rusiyanto. (2012). Peningkatan Sifat Mekanis Aluminium Bekas. Jurnal Profesional, 8(1), 12–22
  4. Chang, Y.L., Hung, F.Y., & Lui, T.S. (2017). Enhancing The Tensile Yield Strength Of A 6082 Aluminium Alloy With Rapid Heat Solutionizing. Material Science & Engineering. National Cheng Kung University
  5. Ismail, F. (2012). Rancang Bangun Alat Uji Impak Charpy. Tugas Akhir Fakultas Teknik. Universitas Diponegoro
  6. International Standardization Organization. (2019). Metallic Materials-Tensile Testing Third Edition (p. 1). Switzerland: ISO
  7. Palagan, F. F. K. (2015). Pengaruh Model Sistem Saluran Pada Proses Lumpur Porong, Sidoarjo Sebagai Pengikat Pasir Cetak. Jurnal Teknik Mesin, 23(2)
  8. Perna, M. I. R. (2017). High Performing Cast Aluminium-Silicon Alloys (p. 25). Kallered: Ineko AB
  9. Saputra, A. B. (2018). Analisis Sifat Mekanik Pasir Cetak Terhadap Variasi Penggunaan Pengikat Lempung Bangkalan, Fly Ash, dan Bentonit. (Skripsi tidak diterbitkan). Universitas Negeri Malang
  10. Sari, R. P. K., Siahaan, E., & Darmawan, S. (2016). Pengaruh Unsur Silikon Pada Aluminium Alloy (AlSi) Terhadap Sifat Mekanis dan Struktur Mikro. Jurnal Poros, 14(1), 49–56
  11. Shahria, S., Tariquzzaman., Rahman, H., Amin, A., & Rahman, A. (2017). Optimization Of Molding Sand Composition For Casting Al Alloy. International Journal of Mechanical Engineering and Applications, 5(3), 155–161
  12. Soedihono. (2012). Pencegahan Pembekuan Putih Pada Besi Cor Kelabu FC-250 Menggunakan Teknologi Inokulasi. Jurnal Steman. Politeknik Manufaktur Negeri Bandung
  13. Sudibyo, A., Kusharjanta, B., & Raharjo, W.P. (2013). Pengaruh Penampang Ingate Terhadap Cacat Porositas dan Nilai Kekerasan Pada Proses Pengecoran Aluminium Menggunakan Cetakan Pasir. Jurnal Mekanika, 12(1), 53–56
  14. Suharnadi, B. & Santoso, N. (2016). Variasi Penambahan Fluk Untuk Mengurangi Cacat Lubang Jarum dan Peningkatan Kekuatan Mekanik. Jurnal Material dan Teknologi Proses, 1(1), 13–17
  15. Suprapto, W. (2011). Porositas Gas Pada Material Duralium Dalam Pengecoran Sistem Vakum. (Disertasi tidak diterbitkan). Universitas Indonesia
  16. Surdia, T. & Chijiwa, K. (2006). Teknik Pengecoran Logam (p. 93). Jakarta: Pradnya Paramita
  17. Syaifullah, C. G., Saputra, A. B., Ruhyatul, S. F., & Puspitasari, P. (2018). Analisys Of Casting Defects and Mechanical Properties on Al-Si Alloys Using Bangkalan Local Clays as Sand Casting Binder. In MATEC Web of Conferences. (pp. 204). Malang, Indonesia: Department of Mechanical Engineering, State University of Malang
  18. Tiedje, N. S., Taylor, J. A., & Easton, M. A. (2013). A New Multi‐Zone Model For Porosity Distribution In Al‐Si Alloy Castings. Acta Materialia, 61(8), 3037–3049
  19. Yohanes, G. & Djamil, S. (2008). Pengaruh Degasser dan Grain Refiner Terhadap Sifat Mekanik Paduan AlSi Produk Cor. Jurnal Prosiding Seminar Nasional Teknoin 2008 Bidang Teknik Mesin. Universitas Tarumanegara
  20. Zamani, M. (2015). AlSi Cast Alloys-Microstructure and Mechanical Properties at Ambient and Elevated Temperature (p. 53). Kallered: Ineko AB
  21. Zhang, Y. X., Yi, Y. P., Huang, S. Q., & Dong, F. (2016). Influence Of Quenching Cooling Rate On Residual Stress and Tensile Properties Of 2A14 Aluminium Alloy Forgings. Material Science and Engineering A, 674, 658–665

Last update:

No citation recorded.

Last update: 2025-01-15 14:47:20

No citation recorded.