skip to main content

Studi Komparasi Dampak Lingkungan Produksi Campuran Aspal Hangat Modifikasi Polimer EVA dengan Campuran Aspal Panas Skala Laboratorium Menggunakan Life Cycle Assessment (LCA)

*Christian Gerald Daniel orcid scopus  -  Department of Civil Engineering, Pelita Harapan University, Jl. MH. Thamrin Boulevard 1100, Tangerang, Banten, Indonesia 15811, Indonesia
Khairina Canny orcid  -  Smart Construction and Civil Engineering, Calvin Institute of Technology, Indonesia
Fadhil Muhammad Firdaus  -  Air Quality Research Analyst at World Resources Institute, Indonesia
Darren Benedict Iskandar  -  Departemen Teknik Sipil, Fakultas Sains dan Teknologi, Universitas Pelita Harapan, Indonesia
Open Access Copyright (c) 2023 TEKNIK

Citation Format:
Abstract
 Studi ini membandingkan dampak lingkungan dari produksi campuran aspal hangat (Warm Mix Asphalt – WMA) dimodifikasi polimer EVA dengan dosis 5% berat bitumen melalui metode pencampuran kering (dry mixing) dengan campuran aspal panas (Hot Mix Asphalt – HMA) standar pada skala laboratorium menggunakan metode Life Cycle Assessment (LCA,) dengan lingkup dari akuisisi bahan baku hingga produksi di laboratorium aspal Universitas Pelita Harapan. Kajian ini menggabungkan database CML-IA Midpoint dan Eurobitume serta pengukuran emisi di laboratorium. Hasil pengukuran menunjukkan penurunan pada suhu produksi WMA menghasilkan emisi CO2 dan Volatile Organic Compound (VOC) yang lebih rendah sebesar 41.82% - 46.96% dan 5.3% - 7.98% dibandingkan HMA. Emisi formaldehida pada produksi WMA menurun hingga 77-79%, maupun Particulate Matter (PM10, PM2.5, PM1) sebesar 74.95% - 81.42%, 77.31% - 85.11%, dan 81.96% - 89.19%. Analisis LCA menunjukkan dampak Global Warming Potential WMA modifikasi mengalami kenaikan 3.66% dan 5.95% dari HMA akibat penggunaan bahan tambah, tetapi menurun dari segi Freshwater Aquatic Ecotoxicity Potential sebesar 12.96% - 14.12%, serta Human Toxicity dan Photochemical Oxidation Potential sebesar 1.73%. Kesimpulan yang didapatkan yakni penggunaan EVA untuk modifikasi WMA pada dosis 5% dan 6% menghasilkan pengurangan dampak sebesar 3.48% dan 1.43% dibandingkan HMA dengan sifat mekanis sesuai standar Bina Marga 2018
Fulltext View|Download
Keywords: Life Cycle Assessment (LCA); Cradle-to-Gate; campuran aspal hangat; aspal modifikasi polimer; EVA

Article Metrics:

  1. Ain, T. N., Auvaria, S. W., & Nurmaningsih, D. R. (2022). Perkiraan Potensi Pemanasan Global pada Skenario Pengelolaan Sampah Domestik di Kota Sukabumi. Jurnal Teknologi Lingkungan, 23(2), 214–221. https://ejurnal.bppt.go.id/index.php/JTL/article/view/4919/4347
  2. Albayati, A. H., Al-Mosawe, H. M., Allawi, A. A., & Oukaili, N. (2018). Moisture Susceptibility of Sustainable Warm Mix Asphalt. Advances in Civil Engineering, 2018. https://doi.org/10.1155/2018/3109435
  3. Apostolidis, P., Liu, X., Daniel, C. G., & Erkens, S. (2019). Fracture Performance of Synthetic Fibre-Reinforced Asphalt Mortar Fracture Performance of Synthetic Fibre-Reinforced Asphalt Mortar Section of Pavement Engineering Faculty of Civil Engineering and Geosciences Delft University of Technology Department of C. February
  4. Apostolidis, P., Liu, X., Daniel, G. C., Erkens, S., & Scarpas, T. (2020). Effect of synthetic fibres on fracture performance of asphalt mortar. Road Materials and Pavement Design, 21(7), 1918–1931. https://doi.org/10.1080/14680629.2019.1574235
  5. Araujo, D. L. V., Santos, J., & Martinez-Arguelles, G. (2022a). Environmental performance evaluation of warm mix asphalt with recycled concrete aggregate for road pavements. International Journal of Pavement Engineering. https://doi.org/10.1080/10298436.2022.2064999
  6. Araujo, D. L. V., Santos, J., & Martinez-Arguelles, G. (2022b). Environmental performance evaluation of warm mix asphalt with recycled concrete aggregate for road pavements. International Journal of Pavement Engineering. https://doi.org/10.1080/10298436.2022.2064999
  7. Brasileiro, L., Moreno-Navarro, F., Tauste-Martínez, R., Matos, J., & Rubio-Gámez, M. del C. (2019). Reclaimed polymers as asphalt binder modifiers for more sustainable roads: A review. Sustainability (Switzerland), 11(3). https://doi.org/10.3390/su11030646
  8. Centre for Ecotoxicology, E., & of Chemicals, T. (2016). TR127: Freshwater ecotoxicity as an impact category in life cycle assessment
  9. Chong, D., Wang, Y., Guo, H., & Lu, Y. (2014). Volatile Organic Compounds Generated in Asphalt Pavement Construction and Their Health Effects on Workers. Journal of Construction Engineering and Management, 140(2). https://doi.org/10.1061/(asce)co.1943-7862.0000801
  10. Cristobal-Garcia, J., Reale, F., Sala, S., Pant, R., & European Commission. Joint Research Centre. (2016). Life cycle assessment for the impact assessment of policies. Publications Office
  11. Daniel, C. G., Liu, X., Apostolidis, P., Erkens, S. M. J. G., & Scarpas, A. (2021). Low-temperature fracture behaviour of synthetic polymer-fibre reinforced warm mix asphalt. In Green and Intelligent Technologies for Sustainable and Smart Asphalt Pavements (1st ed., Vol. 1, Issue 3, pp. 358–362). Taylor & Francis. https://doi.org/https://doi.org/10.1201/9781003251125
  12. Daniel, C. G., Widjajakusuma, J., Otto, I., & Saputan, C. (2022). The Evaluation of Physical and Mechanical Properties of Synthetic Polymer Modified Hot and Warm Mix Asphalt. IOP Conference Series: Earth and Environmental Science, 1117(1), 012002. https://doi.org/10.1088/1755-1315/1117/1/012002
  13. Direktorat Jenderal Pengendalian Pencemaran dan Kerusakan Lingkungan, K. L. H. dan K. (2021). Pedoman Penyusunan Laporan Penilaian Daur Hidup (LCA)
  14. Dirjen Bina Marga. (2018). Spesifikasi Umum Bina Marga 2018
  15. Espinoza, M., Campos, N., Yang, R., Ozer, H., Aguiar-Moya, J. P., Baldi, A., Loría-Salazar, L. G., & Al-Qadi, I. L. (2019). Carbon footprint estimation in road construction: La Abundancia-Florencia case study. Sustainability (Switzerland), 11(8). https://doi.org/10.3390/su11082276
  16. European Asphalt Pavement Association. (2014). The use of Warm Mix Asphalt. www.eapa.org
  17. European Environment Agency. (2016). EMEP/EEA air pollutant emission inventory guidebook 2016
  18. Fistcar, W. A. (n.d.). Implementasi Life Cycle Assessment (LCA) Pada Pemilihan Perkerasan Kaku dan Lentur Kontruksi Jalan Tol Balikpapan-Samarinda
  19. Fistcar, W. A. (2020). Implementasi Life Cycle Assessment (LCA) Pada Pemilihan Perkerasan Kaku dan Lentur Kontruksi Jalan Tol Balikpapan-Samarinda. Jurnal Aplikasi Teknik Sipil, 18(2), 307–314. https://iptek.its.ac.id/index.php/jats
  20. Florkova, Z., Sedivy, S., & Pastorkova, J. (2021). The environmental impact of asphalt mixtures production for road infrastructure. IOP Conference Series: Materials Science and Engineering, 1015(1), 012097. https://doi.org/10.1088/1757-899x/1015/1/012097
  21. Giustozzi, F., Crispino, M., Toraldo, E., & Mariani, E. (2015). Mix design of polymer-modified and fiber-reinforced warm-mix asphalts with high amount of reclaimed asphalt pavement: Achieving sustainable and high-performing pavements. Transportation Research Record, 2523, 3–10. https://doi.org/10.3141/2523-01
  22. Hamilton, S. F., & Requate, T. (2012). Emissions standards and ambient environmental quality standards with stochastic environmental services. Journal of Environmental Economics and Management, 64(3), 377–389. https://doi.org/10.1016/j.jeem.2012.05.001
  23. Hertwich, E. G., Mateles, S. F., Pease, W. S., & Mckone, T. E. (2001). Life-Cycle Assessment Human Toxicity Potentials For Life-Cycle Assessment And Toxics Release Inventory Risk Screening. In Environmental Toxicology and Chemistry (Vol. 20, Issue 4). www.scorecard.org
  24. Iterchemica. (n.d.-a). Superplast Polymeric Compound For Bituminous Mixes Modification. www.iterchimica.it
  25. Iterchemica. (n.d.-b). SUPERPLAST.1
  26. Jahnke, J. A. (2022). Continuous Emission Monitoring (3rd ed.). John Wiley & Sons, Inc
  27. JRC Science Hub. (2016). Guide for interpreting life cycle assessment result
  28. Jullien, A., Gaudefroy, V., Ventura, A., de la Roche, C., Monéron, P., & Paranhos, R. (2010). Airborne emissions assessment of hot asphalt mixing: Methods and limitations. Road Materials and Pavement Design, 11(1), 149–169. https://doi.org/10.1080/14680629.2010.9690264
  29. Khater, A., Luo, D., Abdelsalam, M., Ma, J., & Ghazy, M. (2021). Comparative life cycle assessment of asphalt mixtures using composite admixtures of lignin and glass fibers. Materials, 14(21). https://doi.org/10.3390/ma14216589
  30. Lawrence, E. O., Mckone, T. E., & Hertwich, E. G. (2001). LBNL-48254 The Human Toxicity Potential and a Strategy for Evaluating Model Performance in Life-Cycle Impact Assessment
  31. Life Cycle Association of New Zealand. (2019). Impact Category. Photochemical oxidation Potential. https://lcanz.org.nz/wp/wp-content/uploads/2019/06/photochemical_oxdation_lcanz.pdf
  32. Lushinga, N., Cao, L., Dong, Z., Yang, C., & Assogba, C. O. (2020). Performance Evaluation of Crumb Rubber Asphalt Modified with Silicone-Based Warm Mix Additives. Advances in Civil Engineering, 2020. https://doi.org/10.1155/2020/4840825
  33. Ma, H., Zhang, Z., Zhao, X., & Wu, S. (2019). A comparative life cycle assessment (LCA) of warm mix asphalt (WMA) and hot mix asphalt (HMA) pavement: A case study in China. Advances in Civil Engineering, 2019. https://doi.org/10.1155/2019/9391857
  34. Martin, H., Kerstin, Z., & Joachim, M. (2019). Reduced emissions of warm mix asphalt during construction. Road Materials and Pavement Design, 20(sup2), S568–S577. https://doi.org/10.1080/14680629.2019.1628426
  35. Martinez-Soto, A., Calabi-Floody, A., Valdes-Vidal, G., Hucke, A., & Martinez-Toledo, C. (2023). Life Cycle Assessment of Natural Zeolite-Based Warm Mix Asphalt and Reclaimed Asphalt Pavement. Sustainability, 15(2), 1003. https://doi.org/10.3390/su15021003
  36. Masri, Ts. Dr. K. A., R. Ferdaus, & P.J. Ramadhansyah. (2022). Sustainable Use of Polymer in Asphalt Mixture: A Review. CONSTRUCTION, 2(2), 12–21. https://doi.org/10.15282/construction.v2i2.7744
  37. Mazumder, M., Sriraman, V., Kim, H. H., & Lee, S. J. (2016). Quantifying the environmental burdens of the hot mix asphalt (HMA) pavements and the production of warm mix asphalt (WMA). International Journal of Pavement Research and Technology, 9(3), 190–201. https://doi.org/10.1016/j.ijprt.2016.06.001
  38. McNally, T., & Pötschke, P. (2011). Polymer modified bitumen: Properties and Characterisation. Woodhead Pub
  39. Mejías-Santiago, M., & Osborn, L. V. (2014). Emissions Reductions Associated with the Use of Warm-Mix Asphalt as Compared to Hot-Mix Asphalt Geotechnical and Structures Laboratory. www.erdc.usace.army.mil
  40. Milad, A., Babalghaith, A. M., Al-Sabaeei, A. M., Dulaimi, A., Ali, A., Reddy, S. S., Bilema, M., & Yusoff, N. I. M. (2022a). A Comparative Review of Hot and Warm Mix Asphalt Technologies from Environmental and Economic Perspectives: Towards a Sustainable Asphalt Pavement. In International Journal of
  41. Environmental Research and Public Health (Vol. 19, Issue 22). MDPI. https://doi.org/10.3390/ijerph192214863
  42. Milad, A., Babalghaith, A. M., Al-Sabaeei, A. M., Dulaimi, A., Ali, A., Reddy, S. S., Bilema, M., & Yusoff, N. I. M. (2022b). A Comparative Review of Hot and Warm Mix Asphalt Technologies from Environmental and Economic Perspectives: Towards a Sustainable Asphalt Pavement. In International Journal of Environmental Research and Public Health (Vol. 19, Issue 22). MDPI. https://doi.org/10.3390/ijerph192214863
  43. Milad, A., Babalghaith, A. M., Al-Sabaeei, A. M., Dulaimi, A., Ali, A., Reddy, S. S., Bilema, M., & Yusoff, N. I. M. (2022c). A Comparative Review of Hot and Warm Mix Asphalt Technologies from Environmental and Economic Perspectives: Towards a Sustainable Asphalt Pavement. In International Journal of Environmental Research and Public Health (Vol. 19, Issue 22). MDPI. https://doi.org/10.3390/ijerph192214863
  44. Montanelli, Eng. F., & srl, I. (2013). Fiber/Polymeric Compound for High Modulus Polymer Modified Asphalt (PMA). Procedia - Social and Behavioral Sciences, 104, 39–48. https://doi.org/10.1016/j.sbspro.2013.11.096
  45. Mukherjee, A. (2016a). Life Cycle Assessment of Asphalt Mixtures in Support of an Environmental Product Declaration
  46. Mukherjee, A. (2016b). Life Cycle Assessment of Asphalt Mixtures in Support of an Environmental Product Declaration
  47. National Asphalt Pavement Association. (2012). Warm-Mix Asphalt: Best Practices - Quality Improvement Publication 125 3rd Edition. www.AsphaltPavement.org
  48. National Pollutant Inventory Australia. (1999). Emission Estimation Technique Manual for Hot Mix Asphalt Manufacturing
  49. Nur Naqibah Kamarudin, S., Rosli Hainin, M., Khairul Idham Mohd Satar, M., & Naqiuddin Bin Mohd Warid, M. (2018). Comparison of Performance between Hot and Warm Mix Asphalt as Related to Compaction Design. Journal of Physics: Conference Series, 1049(1). https://doi.org/10.1088/1742-6596/1049/1/012036
  50. Oktopianto, Y., & Hidayat, D. W. (n.d.). Analisis Efisiensi Penggunaan Teknologi Aspal Daur Ulang Pada Jalan Tol Elevated Ir. Wiyoto Wiyono
  51. Oreto, C., Russo, F., Veropalumbo, R., Viscione, N., Biancardo, S. A., & Dell’acqua, G. (2021). Life cycle assessment of sustainable asphalt pavement solutions involving recycled aggregates and polymers. Materials, 14(14). https://doi.org/10.3390/ma14143867
  52. Park, W. J., Kim, R., Roh, S., & Ban, H. (2020). Analysis of major environmental impact categories of road construction materials. Sustainability (Switzerland), 12(17). https://doi.org/10.3390/su12176951
  53. Piccone, G., Loprencipe, G., Almeida, A., & Fiore, N. (2020a). Evaluation of the performance of a warm mix asphalt (Wma) considering aged and unaged specimens. Coatings, 10(12), 1–17. https://doi.org/10.3390/coatings10121241
  54. Piccone, G., Loprencipe, G., Almeida, A., & Fiore, N. (2020b). Evaluation of the performance of a warm mix asphalt (Wma) considering aged and unaged specimens. Coatings, 10(12), 1–17. https://doi.org/10.3390/coatings10121241
  55. Rahman, M. A., Ghabchi, R., Zaman, M., & Ali, S. A. (2021). Rutting and moisture-induced damage potential of foamed warm mix asphalt (WMA) containing RAP. Innovative Infrastructure Solutions, 6(3). https://doi.org/10.1007/s41062-021-00528-7
  56. Rilwani, M. L., & Agbanure, F. E. (2010). An assessment of the environmental impact of asphalt production in Nigeria. Anthropologist, 12(4), 277–287. https://doi.org/10.1080/09720073.2010.11891167
  57. Romadhon, Fanani, Z., Wicaksono, A., & Kurniawan, A. (2020a). Analysis Of Pollution Level On Asphalt Mixing Plant Factory Activities In Grogol District Of Kediri Regency, Indonesia. Russian Journal of Agricultural and Socio-Economic Sciences, 104(8), 33–38. https://doi.org/10.18551/rjoas.2020-08.04
  58. Romadhon, Fanani, Z., Wicaksono, A., & Kurniawan, A. (2020b). Environmental Impact Resulting From Asphalt Mixing Plant’s Activities At Grogol, Kediri. Russian Journal of Agricultural and Socio-Economic Sciences, 104(8), 165–174. https://doi.org/10.18551/rjoas.2020-08.18
  59. Rubio, M. C., Martínez, G., Baena, L., & Moreno, F. (2012). Warm Mix Asphalt: An overview. Journal of Cleaner Production, 24, 76–84. https://doi.org/10.1016/j.jclepro.2011.11.053
  60. Salehi, S., Arashpour, M., Kodikara, J., & Guppy, R. (2022). Comparative life cycle assessment of reprocessed plastics and commercial polymer modified asphalts. Journal of Cleaner Production, 337. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.130464
  61. Santos, J., Cerezo, V., Soudani, K., & Bressi, S. (2018). A Comparative Life Cycle Assessment of Hot Mixes Asphalt Containing Bituminous Binder Modified with Waste and Virgin Polymers. Procedia CIRP, 69, 194–199. https://doi.org/10.1016/j.procir.2017.11.046
  62. Sarasputri, D. A. (2022). Life Cycle Assessment (LCA) Perkerasan Jalan Beraspal Dengan Reclaimed Asphalt Pavement (RAP) Di Ruas Jalan Nasional Provinsi Jawa Barat. Universitas Indonesia
  63. SICK Sensor Intelligence. (2021). Continuous Monitoring Of Emissions In Asphalt Mixing Plants. https://cdn.sick.com/media/docs/0/60/260/special_information_operator_friendly_all_in_one_solution_construction_materials_en_im0096260.pdf
  64. Sollazzo, G., Longo, S., Cellura, M., & Celauro, C. (2020). Impact analysis using life cycle assessment of asphalt production from primary data. Sustainability (Switzerland), 12(24), 1–21. https://doi.org/10.3390/su122410171
  65. Sukhija, M., & Saboo, N. (2021). A comprehensive review of warm mix asphalt mixtures-laboratory to field. In Construction and Building Materials (Vol. 274). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2020.121781
  66. Tacoma-Pierce. (2020). Asphalt Production Policy Health Impact Assessment Asphalt Production Policy Health Impact Assessment
  67. Tang, N., Yang, K. kai, Alrefaei, Y., Dai, J. G., Wu, L. M., & Wang, Q. (2020). Reduce VOCs and PM emissions of warm-mix asphalt using geopolymer additives. Construction and Building Materials, 244. https://doi.org/10.1016/j.conbuildmat.2020.118338
  68. Tarannum, N., Brishti, B. S. R., Dima, S. S., & Kirtania, K. (2021). Life-Cycle Impact Assessment of Fossil Power Plants with and without Co2 Capture Evaluating the Possibility of Co2 Utilization. Chemical Engineering Research Bulletin, 88–93. https://doi.org/10.3329/cerb.v22i1.54305
  69. Tiwary, A., & Colls, J. (2010). Air Pollution: Measurement, modelling and mitigation, Third edition (3rd ed.)
  70. Tutu, K. A., & Tuffour, Y. A. (2016a). Warm-Mix Asphalt and Pavement Sustainability: A Review. Open Journal of Civil Engineering, 06(02), 84–93. https://doi.org/10.4236/ojce.2016.62008
  71. Tutu, K. A., & Tuffour, Y. A. (2016b). Warm-Mix Asphalt and Pavement Sustainability: A Review. Open Journal of Civil Engineering, 06(02), 84–93. https://doi.org/10.4236/ojce.2016.62008
  72. US EPA. (2000). Hot Mix Asphalt Plants - Emission Assessment Report
  73. Vega-Araujo, D., Martinez-Arguelles, G., & Santos, J. (2020). Comparative life cycle assessment of warm mix asphalt with recycled concrete aggregates: A Colombian case study. Procedia CIRP, 90, 285–290. https://doi.org/10.1016/j.procir.2020.02.126
  74. Vidal, R., Moliner, E., Martínez, G., & Rubio, M. C. (2013). Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement. Resources, Conservation and Recycling, 74, 101–114. https://doi.org/10.1016/j.resconrec.2013.02.018
  75. Wang, H., Liu, X., Apostolidis, P., & Scarpas, T. (2018). Rheological behavior and its chemical interpretation of crumb rubber modified asphalt containing warm-mix additives. Transportation Research Record, 2672(28), 337–348. https://doi.org/10.1177/0361198118781376
  76. Wang, H., Liu, X., van de Ven, M., Lu, G., Erkens, S., & Skarpas, A. (2020). Fatigue performance of long-term aged crumb rubber modified bitumen containing warm-mix additives. Construction and Building Materials, 239. https://doi.org/10.1016/j.conbuildmat.2019.117824
  77. Wang, M., Wang, C., Huang, S., & Yuan, H. (2021). Study on asphalt volatile organic compounds emission reduction: A state-of-the-art review. In Journal of Cleaner Production (Vol. 318). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2021.128596
  78. Wildnauer, M., Mulholland, E., Liddie, J., Koffler, C., & Murphy, S. (2019). Title: Life Cycle Assessment of Asphalt Binder On behalf of thinkstep AG and its subsidiaries Document prepared by Quality assurance by Under the supervision of
  79. Wirahadikusumah, R. D., & Sahana, H. P. (2012). Estimasi Konsumsi Energi dan Emisi Gas Rumah Kaca pada Pekerjaan Pengaspalan Jalan. Jurnal Teknik Sipil, 19(1), 25–36
  80. Xiu, M., Wang, X., Morawska, L., Pass, D., Beecroft, A., Mueller, J. F., & Thai, P. (2020). Emissions of particulate matters, volatile organic compounds and polycyclic aromatic hydrocarbons from warm and hot asphalt mixes. Journal of Cleaner Production, 275. https://doi.org/10.1016/j.jclepro.2020.123094
  81. Zaumanis, M. (2010). Warm Mix Asphalt Investigation. Technical University Of Denmark
  82. Zaumanis, M. (2014a). Warm mix asphalt. Green Energy and Technology, 204, 309–334. https://doi.org/10.1007/978-3-662-44719-2_10
  83. Zaumanis, M. (2014b). Warm mix asphalt. Climate Change, Energy, Sustainability and Pavements, 309-334.Zhao, W., Xiao, F., Amirkhanian, S. N., & Putman, B. J. (2012). Characterization of rutting performance of warm additive modified asphalt mixtures. Construction and Building Materials, 31, 265–272. https://doi.org/10.1016/j.conbuildmat.2011.12.101

Last update:

  1. Lab-scale environmental impact measurement of polymer-modified asphalt concrete mixtures production

    Christian Gerald Daniel, Fadhil Muhammad Firdaus, M.S. Abfertiawan, H.D. Ariesyady, I.R.S. Salami, M. Firdayati. E3S Web of Conferences, 485 , 2024. doi: 10.1051/e3sconf/202448501003

Last update: 2024-05-12 06:17:59

No citation recorded.