skip to main content

RANCANG BANGUN PENGISI DAYA UNTUK BATERAI LITHIUM-POLYMER DENGAN MEMPERTIMBANGKAN KOMPENSASI RESISTANSI

*Rizki Nurilyas Ahmad orcid scopus  -  Program Studi Teknik Elektro, Fakultas Teknik, Universitas Muhammadiyah Surakarta, Indonesia
Heri Suryoatmojo  -  Departemen Teknik Elektro, Fakultas Teknologi Elektro, Institut Teknologi Sepuluh Nopember, Indonesia
Dedet Candra Riawan  -  Departemen Teknik Elektro, Fakultas Teknologi Elektro, Institut Teknologi Sepuluh Nopember, Indonesia
Dikirim: 29 Mar 2023; Diterbitkan: 3 Jun 2023.
Akses Terbuka Copyright (c) 2023 Transmisi: Jurnal Ilmiah Teknik Elektro under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Sari

 

Baterai lithium-ion-polymer atau lithium-polymer merupakan salah satu jenis dari baterai berbasis lithium-ion. Saat ini, baterai berbasis Lithium-ion banyak digunakan pada berbagai macam perangkat portabel hingga kendaraan listrik. Pengisi daya atau charger untuk baterai berbasis Lithium-ion yang umum digunakan saat ini menggunakan metode constant current – constant voltage (CC-CV). Metode ini dianggap efektif untuk menghindari undercharging dan overcharging. Pada battery pack terdapat akumulasi resistansi yang dapat menyebabkan penurunan tegangan pada cell baterai, dan dapat mempercepat proses transisi dari mode CC menjadi mode CV. Percepatan transisi tersebut dapat mengakibatkan proses pengisian daya berlangsung lebih lama. Pada penelitian ini dibahas bagaimana proses kompensasi resistansi pada charger dengan topologi PLL, untuk mengompensasi akumulasi resistansi pada battery pack pada saat proses pengisian daya berlangsung. Pada simulasi didapatkan hasil bahwa pengisi daya dengan kompensasi resistansi menghasilkan waktu pengisian daya 17.82% lebih cepat, sedangkan pada uji coba alat didapatkan waktu pengisian daya 15.58% lebih cepat, kedua hasil tersebut jika dibandingkan dengan pengisi daya dengan topologi PLL tanpa kompensasi resistansi.

Catatan: Artikel ini mempunyai file lampiran.

Fulltext View|Download |  ##author.submit.suppFile.copyrightTransferAgreementForPublication##
Form Pengalihan Hak Cipta
Subjek
Tipe ##author.submit.suppFile.copyrightTransferAgreementForPublication##
  Unduh (302KB)    metadata pengindeksan
Kata Kunci: Pengisi daya baterai Lithium-polymer; Metode pengisian daya constant current – constant voltage; Kompensasi Resistansi

Article Metrics:

  1. . H. Suryoatmojo, “Design Li-Po Battery Charger with Buck Converter under Partially CC-CV Method,” Proceedings - 2020 International Seminar on Intelligent Technology and Its Application: Humanification of Reliable Intelligent Systems, ISITIA 2020, pp. 101–106, Jul. 2020, doi: 10.1109/ISITIA49792.2020.9163754
  2. . Z. Shafiq and W. Egger, “Study of Charging Strategies of Lithium Batteries and their Effect on the Batteries Technologies,” 2022 IEEE 13th Annual Information Technology, Electronics and Mobile Communication Conference, IEMCON 2022, pp. 540–545, 2022, doi: 10.1109/IEMCON56893.2022.9946511
  3. . P. N. Perez, F. Veirano, and F. Silveira, “A Compact Lithium-Ion Battery Charger for Low-Power Applications,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp. 669–673, Mar. 2022, doi: 10.1109/TCSII.2022.3141701
  4. . L. R. Dung, C. E. Chen, and H. F. Yuan, “A robust, intelligent CC-CV fast charger for aging lithium batteries,” IEEE International Symposium on Industrial Electronics, vol. 2016-November, pp. 268–273, Nov. 2016, doi: 10.1109/ISIE.2016.7744901
  5. . A. L. Eshkevari and M. Zare, “Quasi-resonant switch-mode isolated lithium-ion battery charger with CC-CV modes of operations using secondary side controller,” 2017 25th Iranian Conference on Electrical Engineering, ICEE 2017, pp. 1101–1106, Jul. 2017, doi: 10.1109/IRANIANCEE.2017.7985205
  6. . S. Y. Tseng, T. C. Shih, S. Y. Fan, and G. K. Chang, “Design and implementation of lithium-ion/lithium-polymer battery charger with impedance compensation,” Proceedings of the International Conference on Power Electronics and Drive Systems, pp. 866–870, 2009, doi: 10.1109/PEDS.2009.5385827
  7. . C. H. Lin, C. Y. Hsieh, and K. H. Chen, “A Li-ion battery charger with smooth control circuit and built-in resistance compensator for achieving stable and fast charging,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 2, pp. 506–517, 2010, doi: 10.1109/TCSI.2009.2023830
  8. . MathWorks inc., “Battery.” MathWorks inc., 2008
  9. . L. R. Chen, C. S. Liu, and J. J. Chen, “Improving phase-locked battery charger speed by using resistance-compensated technique,” IEEE Transactions on Industrial Electronics, vol. 56, no. 4, pp. 1205–1211, 2009, doi: 10.1109/TIE.2008.2008342
  10. . L. R. Chen, “PLL-based battery charge circuit topology,” IEEE Transactions on Industrial Electronics, vol. 51, no. 6, pp. 1344–1346, Dec. 2004, doi: 10.1109/TIE.2004.837891
  11. . Colorado University, Lecture: Lead-acid batteries. colorado.edu. Accessed: Mar. 25, 2023. [Online]. Available: https://dokumen.tips/documents/lecture-lead-acid-batterieseceecoloradoeduecen4517materialsbatterypdfpdf.html?page=1
  12. . T. Thanakam and Y. Kumsuwan, “A Developed PLL Control Technique for Distorted and Unbalanced Grid Voltages with a Three-Level NPC Converter-Based Off-Board Battery Charger,” Proceedings of the 2022 International Electrical Engineering Congress, iEECON 2022, 2022, doi: 10.1109/IEECON53204.2022.9741651
  13. . E. Asa, K. Colak, D. Czarkowski, F. De Leon, and I. Sefa, “PLL control technique of LLC resonant converter for EVs battery charger,” International Conference on Power Engineering, Energy and Electrical Drives, pp. 1382–1386, 2013, doi: 10.1109/POWERENG.2013.6635816
  14. . L. R. Chen, J. Y. Han, J. L. Jaw, C. P. Chou, and C. S. Liu, “A resistance-compensated phase-locked battery charger,” 2006 1st IEEE Conference on Industrial Electronics and Applications, 2006, doi: 10.1109/ICIEA.2006.257277
  15. . Pujiono, Rangkaian Elektronika Analog. Yogyakarta: Graha Ilmu, 2012
  16. . A. Tomaszewska et al., “Lithium-ion battery fast charging: A review,” eTransportation, vol. 1, p. 100011, Aug. 2019, doi: 10.1016/J.ETRAN.2019.100011
  17. . Y. Liu, Y. Zhu, and Y. Cui, “Challenges and opportunities towards fast-charging battery materials,” Nature Energy 2019 4:7, vol. 4, no. 7, pp. 540–550, Jun. 2019, doi: 10.1038/s41560-019-0405-3
  18. . A. B. Khan and W. Choi, “Optimal Charge Pattern for the High-Performance Multistage Constant Current Charge Method for the Li-Ion Batteries,” IEEE Transactions on Energy Conversion, vol. 33, no. 3, pp. 1132–1140, Sep. 2018, doi: 10.1109/TEC.2018.2801381
  19. . S. O. Yong, N. A. Rahim, B. M. Eid, and B. Tankut, “Multi-Stage Fast Charging Technique for Lithium Battery in Photovoltaic systems,” 2022 IEEE 7th International conference for Convergence in Technology, I2CT 2022, 2022, doi: 10.1109/I2CT54291.2022.9824535

Last update:

No citation recorded.

Last update: 2024-11-22 06:02:06

No citation recorded.