skip to main content

PENGENDALIAN AGV MENGGUNAKAN RASPBERRY PI DAN MOTOR DC DENGAN SISTEM PENGENALAN LINTASAN MENGGUNAKAN KAMERA DAN SENSOR INFRAMERAH

*Edwin Marulitua  -  Program Studi Teknik Elektro, Fakultas Teknik, Universitas Katolik, Indonesia
Florentinus Budi Setiawan  -  Program Studi Teknik Elektro, Fakultas Teknik, Universitas Katolik, Indonesia
Dikirim: 11 Nov 2024; Diterbitkan: 30 Apr 2025.
Akses Terbuka Copyright (c) 2025 Transmisi: Jurnal Ilmiah Teknik Elektro under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Sari

Automated Guided Viehicle (AGV) adalah robot otonom yang dirancang untuk memindahkan barang secara otomatis dalam lingkungan industry. Penelitian ini bertujuan untuk merancang AGV yang menggunakan motor DC sebagai penggerak utama serta dilengkapi dengan kamera dan sensor inframerah untuk mendeteksi lintasan dan menghindari rintangan. Raspberry pi digunakan sebegai unit pengontrol utama untuk memproses data dari sensor inframerah dan kamera, sehingga memungkinkan navigasi robot secara mandiri dan efisien. Hasil pengujian menunjukan bahwa AGV ini mampu bergerak dengan akurasi tinggi, dan berperan penting dalam meningkatkan efisiensi operasional di sektro manufaktur, terutama dalam hal penghematan waktu dan tenaga kerja.

Fulltext View|Download
Kata Kunci: AGV; Kamera; Sensor inframerah; Motor DC; Raspberry Pi;

Article Metrics:

  1. . F. B. Setiawan, O. J. Aldo Wijaya, L. H. Pratomo, and S. Riyadi, “Sistem Navigasi Automated Guided Vehicle Berbasis Computer Vision dan Implementasi pada Raspberry Pi,” Jurnal Rekayasa Elektrika, vol. 17, no. 1, pp. 7–14, 2021, doi: 10.17529/jre.v17i1.18087
  2. . M. De Ryck, M. Versteyhe, and F. Debrouwere, “Automated guided vehicle systems, state-of-the-art control algorithms and techniques,” J Manuf Syst, vol. 54, no. December 2019, pp. 152–173, 2020, doi: 10.1016/j.jmsy.2019.12.002
  3. . Sumardi, M. Taufiqurrahman, and M. A. Riyadi, “Street mark detection using raspberry pi for self-driving system,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 16, no. 2, pp. 629–634, 2018, doi: 10.12928/TELKOMNIKA.v16i2.4509
  4. . C. Liu, J. Tan, H. Zhao, Y. Li, and X. Bai, “Path planning and intelligent scheduling of multi-AGV systems in workshop,” Chinese Control Conference, CCC, pp. 2735–2739, 2017, doi: 10.23919/ChiCC.2017.8027778
  5. . B. Xu and D. Wang, “Magnetic Locating AGV Navigation Based on Kalman Filter and PID Control,” Proceedings 2018 Chinese Automation Congress, CAC 2018, pp. 2509–2512, 2019, doi: 10.1109/CAC.2018.8623691
  6. . S. H. Bach and S. Y. Yi, “An Efficient Approach for Line-Following Automated Guided Vehicles Based on Fuzzy Inference Mechanism,” Journal of Robotics and Control (JRC), vol. 3, no. 4, pp. 395–401, 2022, doi: 10.18196/jrc.v3i4.14787
  7. . Á. Cservenák, “Motion Planning for Automated Guided Vehicle,” Acta Technica Corviniensis - Bulletin of Engineering, vol. 11, no. 4, pp. 33–38, 2018, [Online]. Available: https://search.proquest.com/docview/2132669330?accountid=26540%0Ahttp://link.periodicos.capes.gov.br/sfxlcl41?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&genre=article&sid=ProQ: ProQ%3Aengineeringjournals&atitle=MOTION+PLANNING+FOR+AUT OMAT
  8. . A. Khedkar, K. Kajani, S. Banthia, B. N. Jagdale, M. Kulkarni, and B. E. Student, “Automated Guided Vehicle System with Collision Avoidance and Navigation in Warehouse Environments,” International Research Journal of Engineering and Technology, no. May, pp. 5442–5448, 2020, [Online]. Available: www.irjet.net
  9. . F. Irsyadi, D. N. Pratomo, S. Julianto, M. S. Anwar, and A. A. Paripurna Barus, “Desain dan Implementasi Sistem Navigasi pada Automated Guided Vehicle (AGV),” Jurnal Listrik, Instrumentasi dan Elektronika Terapan (JuLIET), vol. 2, no. 1, 2021, doi: 10.22146/juliet.v2i1.64830
  10. . Ajib Susanto, Yupie Kusumawati, Ericsson Dhimas Niagara, and Christy Atika Sari, “Convolutional Neural Network Dalam Sistem Deteksi Helm Pada Pengendara Motor,” Seminar Nasional Teknologi dan Multidisiplin Ilmu (SEMNASTEKMU), vol. 2, no. 1, pp. 91–99, 2022, doi: 10.51903/semnastekmu.v2i1.158
  11. . J. Naranjo-Torres, M. Mora, R. Hernández-García, R. J. Barrientos, C. Fredes, and A. Valenzuela, “A review of convolutional neural network applied to fruit image processing,” Applied Sciences (Switzerland), vol. 10, no. 10, 2020, doi: 10.3390/app10103443
  12. . K. Selvaraj, S. Alagarsamy, and M. Dhilipkumar, “Raspberry Pi based automatic door control system,” 2021 3rd International Conference on Signal Processing and Communication, ICPSC 2021, no. May, pp. 652–656, 2021, doi: 10.1109/ICSPC51351.2021.9451687
  13. . G. Chandan, A. Jain, and H. Jain, “Proceedings of the 3rd International Conference on Inventive Research in Computing Applications, ICIRCA 2021,” Proceedings of the 3rd International Conference on Inventive Research in Computing Applications, ICIRCA 2021, no. Icirca, pp. 1305– 1308, 2021
  14. . H. M. Ahmed and R. T. Rasheed, “A Raspberry PI Real-Time Identification System on Face Recognition,” Proceedings of 2020 1st Information Technology to Enhance E-Learning and other Application Conference, IT- ELA 2020, pp. 89–93, 2020, doi: 10.1109/IT-ELA50150.2020.9253107
  15. . G. Anand and A. K. Kumawat, “Object detection and position tracking in real time using Raspberry Pi,” Mater Today Proc, vol. 47, no. xxxx, pp. 3221–3226, 2021, doi: 10.1016/j.matpr.2021.06.437
  16. . Fazri E, I. H. (2024). Pembangunan Rest API untuk Pengelolaan Rute Robot AGV di PT XYZRest API Development for AGV Robot Route Management at PT XYZ. Pembangunan Reast API . (n.d.). From www.researchgate
  17. . Akkharachai Kosiyanurak, N. P. (2024). Estimated Mathematical Model for Controlling Distance of AGVs with Differential Drive Systems
  18. . Y.N.Zhoa, Y. (2023). Intelligent Scheduling of AGV Based on Adaptive Traffic Control System Theory in Automated Terminal
  19. . A. Aqthobilrobbany, A. N. Handayani, D. Lestari, Muladi, R. A. Asmara, and O. Fukuda, “HSV Based Robot Boat Navigation System,” CENIM 2020 - Proceeding: International Conference on Computer Engineering, Network, and Intelligent Multimedia 2020, pp. 269–273, 2020, doi: 10.1109/CENIM51130.2020.9297915
  20. . Muhammad Dandi, M. P. (2024). Implementasi Algoritma Pengolahan Citra dan Algoritma Jaringan Syaraf Tiruan pada Prototipe Mobil Otonom Berbasis Raspberry Pi
  21. . Fitra Triatmojo, B. S. (2018). Robot Pengikut Posisi dengan Menggunakan Filter Warna HSV
  22. . M. Zikri Andrekha1 and Yasdinul Huda, “Deteksi Warna Manggis Menggunakan Pengolahan Citra dengan Opencv Python,” Jurnal Vocational Teknik Elektronika dan Informatika Vol. 9, No. 4, Desember 2021
  23. . Ezra, Sistem Object Tracking pada Quadcopter Menggunakan Segmentasi Citra dengan Deteks Warna HSV dan Metode Regresi Linier Berbasis Raspberry Pi, 2022)

Last update:

No citation recorded.

Last update: 2025-06-01 02:17:52

No citation recorded.