skip to main content

OPTIMIZATION OF PHOTOVOLTAIC COOLING SYSTEM PERFORMANCE: A COMPARISON REVIEW OF ACTIVE, PASSIVE AND COMBINED METHODS

Alfiah Jihan Novitasari  -  Departemen Teknik Elektro, Universitas Global Jakarta, Indonesia
*Brainvendra Widi Dionova  -  Departemen Teknik Elektro, Universitas Global Jakarta, Indonesia
Ariep Jaenul  -  Departemen Teknik Elektro, Universitas Global Jakarta, Indonesia
Muhammad Irsyad Abdullah  -  Faculty of Information Sciences & Engineering, Management and Science University, Shah Alam, Malaysia, Indonesia
Dikirim: 8 Mei 2025; Diterbitkan: 31 Jul 2025.
Akses Terbuka Copyright (c) 2025 Transmisi: Jurnal Ilmiah Teknik Elektro under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Sari
Photovoltaic modules play a crucial role in the generation of renewable energy. However, their performance is highly sensitive to temperature changes, as excessive heat can significantly reduce photovoltaic efficiency and electrical output. To counteract this issue, an effective cooling system is essential to maintain the optimal operating temperature of PV modules. Therefore, a cooling system is needed to maintain the optimal temperature and increase the output. This paper compares various cooling approaches categorized into three main types: active, passive, and hybrid (combined) cooling methods. Active cooling methods, such as forced air cooling and water circulation systems, are capable of significantly reducing the temperature of photovoltaics. However, they often require external power sources, which can reduce overall energy efficiency. Passive cooling techniques, including heat sinks, phase change materials (PCMs), and natural convection, offer energy-efficient alternatives that do not require external power, although their cooling capacity may be limited. Hybrid cooling methods, which integrate active and passive elements, have demonstrated superior performance by balancing energy consumption and cooling effectiveness. Effective cooling not only improves performance but also extends the life of the system. Cooling technology should focus on cost-effective, eco-friendly solutions to enhance solar module performance and support efficient renewable energy use.
Fulltext View|Download
Kata Kunci: Renewable energy; solar photovoltaic; active cooling; passive cooling; energy efficiency;

Article Metrics:

  1. M. N. Alqahtani and H. F. Shatnawi, “Exploring the Impact of Diverse Cooling Duct Configurations on Photovoltaic Panel Performance,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 116, no. 1, pp. 116–129, 2024, doi: 10.37934/arfmts.116.1.116129
  2. Z. Zapałowicz and W. Zeńczak, “Seawater cooling of PV modules mounted on ships in Świnoujście/Poland harbour,” Heliyon, vol. 8, no. 8, pp. 1–7, 2022, doi: 10.1016/j.heliyon.2022.e10078
  3. R. P. Dewi, S. Rahmat, and A. A. Musyafiq, “Implementasi Sistem Pendingin Panel Surya Untuk Mempertahankan Suhu Permukaan Panel,” Pros. Semin. Nas. Wijayakusuma Natl. Conf., vol. 3, no. 1, pp. 75–82, 2022
  4. P. Studi, T. Dirgantara, S. Tinggi, and T. Kedirgantaraan, “Pengujian Sistem Pendingin Panel Surya Berbentuk Tubular Cooler Dengan Solar Simulator Untuk Menguji Daya Keluaran Panel Surya,” vol. 7, no. 1, pp. 10–16, 2021
  5. A. Malvika, U. C. Arunachala, and K. Varun, “Sustainable passive cooling strategy for photovoltaic module using burlap fabric-gravity assisted flow: A comparative Energy, exergy, economic, and enviroeconomic analysis,” Appl. Energy, vol. 326, no. September, pp. 1–17, 2022, doi: 10.1016/j.apenergy.2022.120036
  6. C. J. Chen, Physics Of Solar Energy. Canada: simultaneously, 2015
  7. D. Hendrawati et al., “Design and Performance Evaluation of Analytic-Tuning Pid on Boost Converter for 200 Wp Photovoltaic,” J. Eng. Sci. Technol., vol. 18, no. 4, pp. 1–16, 2023, [Online]. Available: https://www.scopus.com/record/display.uri?eid=2-s2.0-85174285670&origin=resultslist&sort=plf-f&src=s&sid=096276bf4bcc127109bbaf34753d8b49&sot=b&sdt=b&s=FIRSTAUTH%28Hendrawati%29&sl=17&sessionSearchId=096276bf4bcc127109bbaf34753d8b49&relpos=5
  8. N. S. Lewis and G. Crabtree, Basic Research Needs for Solar Energy Utilization. Renée M. Nault, Argonne National Laboratory, 2015
  9. D. Hendrawati et al., “Modified Maximum Power Point Tracking on Models of a 400 Wp Wind Power Plant,” Jaict, vol. 7, no. 2, pp. 125–129, 2022, doi: 10.32497/jaict.v7i2.3917
  10. G. Setyono, N. Kholili, and Y. Rakhmadanu, “The Impact of Utilization The Solar-Panels With a Cooling-Water System as a Source of Micro-Power Generation,” vol. 13, no. 01, pp. 87–92, 2022, doi: 10.35970/infotekmesin.v13i1.1001
  11. J. S. P. Parulian Siagian, Nita Suleman, S. E. W. Asrim, Tambi, and R. A. Wa Ode Zulia Prihatini, Andi Budirohmi, Energi Baru Terbarukan Sebagai Energi Alternatif. Yayasan Kita Menulis, 2023
  12. R. B, S. CK, and K. Sudhakar, “Sustainable passive cooling strategy for PV module: A comparative analysis,” Case Stud. Therm. Eng., vol. 27, no. July, pp. 1–10, 2021, doi: 10.1016/j.csite.2021.101317
  13. A. U. Chandavar, “Quantifying the performance advantage of using passive solar air heater with chimney for photovoltaic module cooling,” no. June, pp. 7–9, 2020, doi: 10.1002/er.5782
  14. P. K. Tiyas and M. Widyartono, “Pengaruh Efek Suhu Terhadap Kinerja Panel Surya,” vol. 9, no. 1, p. 871876, 2020
  15. Z. Genge, M. S. Misaran, Z. Zhang, M. A. Radzali, and M. A. Ismail, “Solar Photovoltaic Surface Cooling Using Hybrid Solar Chimney-Collector with Wavy Fins,” vol. 1, no. 1, pp. 46–58, 2024
  16. A. Jatmiko, G. Marausna, and F. Setiawan, “Rancangan Sistem Pendingin Panel Surya Jenis Box Dengan Arah Aliran Horizontal,” vol. 9, no. 1, pp. 181–188, 2023
  17. N. Miftahhul and D. Adi, “Analisis Karakteristik Modul Panel Surya Dengan Sistem Pendingin Air,” vol. 06, no. 01, pp. 37–42, 2021
  18. B. W. Dionova, D. J. Vresdian, D. Nugraha, A. Janeul, A. Oktaviani, and M. N. Mohammed, “The Efficiency of MPPT in Mitigating the Effects of Partial Shading on Power Stability through the MPNO Method,” J. Nas. Tek. Elektro, 2025
  19. A. I. I. Widodo PS, Sunarso, Ahmad Faizal, Eri Widianto, “Analisis Computational Fluid Dynamics Suhu Permukaan Panel Surya Akibat Pengaruh Intensitas Radiasi Matahari , Kecepatan Angin Dan Suhu Udara,” Din. J. Ilm. Tek. Mesin, vol. 10, no. 1, pp. 55–62, 2018
  20. E. P. Aji, P. Wibowo, and J. Windarta, “Kinerja Pembangkit Listrik Tenaga Surya (PLTS) dengan Sistem On Grid di BPR BKK Mandiraja Cabang Wanayasa Kabupaten Banjarnegara,” J. Energi Baru dan Terbarukan, vol. 3, no. 1, pp. 15–27, 2022, doi: 10.14710/jebt.2022.13158
  21. I. B. G. Widiantara and N. Sugiartha, “Pengaruh Penggunaan Pendingin Air Terhadap Output Panel Surya Pada Sistem Tertutup,” Matrix J. Manaj. Teknol. dan Inform., vol. 9, no. 3, pp. 110–115, 2019, doi: 10.31940/matrix.v9i3.1582
  22. A. Asrori and E. Yudiyanto, “Kajian Karakteristik Temperatur Permukaan Panel terhadap Performansi Instalasi Panel Surya Tipe Mono dan Polikristal,” FLYWHEEL J. Tek. Mesin Untirta, vol. 1, no. 1, p. 68, 2019, doi: 10.36055/fwl.v1i1.7134
  23. I. Baihaqi, E. Tridianto, and A. Ghani, “Studi Eksperimen Pengaruh Ketetebalan Lapisan Air Pendingin Terhadap Daya Keluaran Modul Photovoltaic Monocrystalline,” pp. 46–51, 2017
  24. B. W. Dionova, R. J. P. S, D. J. Vresdian, and L. P. Pratama, “Evaluation of 300 WP Solar Photovoltaic Panel Performance for Electric Vehicle Charging Station,” vol. 19, no. 03, pp. 80–84, 2023, [Online]. Available: http://dx.doi.org/10.32497/eksergi.v19i03.5008
  25. E. P. Laksana, O. Sanjaya, Sujono, S. Broto, and N. Fath, “Sistem Pendinginan Panel Surya dengan Metode Penyemprotan Air dan Pengontrolan Suhu Air menggunakan Peltier,” vol. 10, no. 3, pp. 652–663, 2022
  26. M. P. Putra et al., “Sistem Pendingin Menggunakan Air Untuk Optimasi Kinerja Panel Surya,” vol. 3, no. 1, pp. 40–47, 2021
  27. D. Almanda and D. Bhaskara, “Studi Pemilihan Sistem Pendingin pada Panel Surya Menggunakan Water Cooler , Air Mineral dan Air Laut,” vol. 1, no. 2
  28. M. A. Elias, R. M. Jais, N. Muda, and N. E. H. Hassan, “Advances of Solar PV System Output Improvement through Cooling Technologies in Malaysia,” IOP Conf. Ser. Mater. Sci. Eng., vol. 884, no. 1, pp. 1–7, 2020, doi: 10.1088/1757-899X/884/1/012076
  29. C. Y. Mah, B. H. Lim, C. W. Wong, M. H. Tan, K. K. Chong, and A. C. Lai, “Investigating the Performance Improvement of a Photovoltaic System in a Tropical Climate using Water Cooling Method,” Energy Procedia, vol. 159, pp. 78–83, 2019, doi: 10.1016/j.egypro.2018.12.022
  30. A. Sohail, M. S. Rusdi, M. Waseem, M. Z. Abdullah, F. Pallonetto, and S. M. Sultan, “Cutting-edge developments in active and passive photovoltaic cooling for reduced temperature operation,” Results Eng., vol. 23, no. July, p. 102662, 2024, doi: 10.1016/j.rineng.2024.102662
  31. M. Sharaf, M. S. Yousef, and A. S. Huzayyin, “Review of cooling techniques used to enhance the efficiency of photovoltaic power systems,” Environ. Sci. Pollut. Res., vol. 29, no. 18, pp. 26131–26159, 2022, doi: 10.1007/s11356-022-18719-9
  32. A. Taqwa, T. Dewi, R. D. Kusumanto, C. R. Sitompul, and Rusdianasari, “Automatic Cooling of a PV System to Overcome Overheated PV Surface in Palembang,” J. Phys. Conf. Ser., vol. 1500, no. 1, pp. 1–10, 2020, doi: 10.1088/1742-6596/1500/1/012013
  33. S. K. Pathak, P. O. Sharma, V. Goel, S. Bhattacharyya, H. Ş. Aybar, and J. P. Meyer, “A detailed review on the performance of photovoltaic/thermal system using various cooling methods,” Sustain. Energy Technol. Assessments, vol. 51, no. june, pp. 101–844, 2022, doi: https://doi.org/10.1016/j.seta.2021.101844
  34. B. Widodo, “Peningkatan Energi Listrik Serta Daya Keluaran Pada Panel Surya Dengan Penambahan Sistem Pendingin Heatsink Dan Reflektor Alluminium Foil,” vol. 9, no. 03, pp. 1–4, 2022
  35. A. N. Hidayanti, P. Handayani, and I. Chandra, “Pemanfaatan Metode Single Axis Tracker dan Maximum Power Point Tracker (MPPT) PID untuk Mengoptimalkan Daya Keluaran Panel Surya,” Pros. Ind. Res. Work. Natl. Semin., pp. 149–154, 2019
  36. Y. S. Gaos et al., “The performance of solar collector CPC (compound parabolic concentrator) type with three pipes covered by glass tubes,” AIP Conf. Proc., vol. 1826, no. March, pp. 1–10, 2017, doi: 10.1063/1.4979238
  37. A. I. Ramadhan, E. Diniardi, and S. H. Mukti, “Analisis Desain Sistem Pembangkit Listrik Tenaga Surya Kapasitas 50 WP,” Tek. 37 (2), 2016, 59-63, vol. 11, no. 2, pp. 61–78, 2016, doi: 10.14710/teknik.v37n2.9011
  38. B. H. Purwoto, J. Jatmiko, M. A. Fadilah, and I. F. Huda, “Efisiensi Penggunaan Panel Surya sebagai Sumber Energi Alternatif,” Emit. J. Tek. Elektro, vol. 18, no. 1, pp. 10–14, 2018, doi: 10.23917/emitor.v18i01.6251
  39. H. A. S and M. Bastomi, “Analisis Pengaruh Perubahan Temperatur Panel Terhadap Daya Dan Efisiensi Keluaran Sel Surya Poycrystalline,” Din. J. Ilm. Tek. Mesin, vol. 11, no. 1, p. 33, 2019, doi: 10.33772/djitm.v11i1.9285
  40. A. Warsito, E. Adriono, M. Y. Nugroho, and B. Winardi, “Dipo Pv Cooler, Penggunaan Sistem Pendingin Temperatur Heatsink Fan Pada Panel Sel Surya (Photovolatic) Sebagai Peningkat Kerja Eergi Listrik Baru Terbarukan Metode.,” Tek. Elektro, vol. 2, no. 3, pp. 1–5, 2016
  41. C. O. Rusănescu, M. Rusănescu, I. A. Istrate, G. A. Constantin, and M. Begea, “The Effect of Dust Deposition on the Performance of Photovoltaic Panels,” Energies, vol. 16, no. 19, pp. 1–20, 2023, doi: 10.3390/en16196794
  42. A. Maleki, A. Haghighi, M. El Haj Assad, I. Mahariq, and M. Alhuyi Nazari, “A review on the approaches employed for cooling PV cells,” Sol. Energy, vol. 209, no. October, pp. 170–185, 2020, doi: https://doi.org/10.1016/j.solener.2020.08.083
  43. K. Hasan, S. B. Yousuf, M. S. H. K. Tushar, B. K. Das, P. Das, and M. S. Islam, “Effects of different environmental and operational factors on the PV performance: A comprehensive review,” Energy Sci. Eng., vol. 10, no. 2, pp. 656–675, 2022, doi: 10.1002/ese3.1043
  44. M. S. Loegimin, B. Sumantri, M. A. B. Nugroho, H. Hasnira, and N. A. Windarko, “Sistem Pendinginan Air Untuk Panel Surya Dengan Metode Fuzzy Logic,” J. Integr., vol. 12, no. 1, pp. 21–30, 2020, doi: 10.30871/ji.v12i1.1698
  45. W. Gunawan, A. Sumardiono, and P. N. Cilacap, “Prototipe Sistem Pendingin Dan Penghilang Kotoran Pada Panel Surya,” vol. 05, no. 01, pp. 43–48, 2023
  46. A. Febrina, J. C. Siahaan, and S. Siahaan, “Analisis Sistem Pendingin Bearing Turbin Francis Horizontal Unit 1 Dengan Daya 6,7 Mw Dan Putaran 750 Rpm Di Plta Pakkat Pt. Energi Sakti Sentosa,” SINERGI POLMED J. Ilm. Tek. Mesin, vol. 3, no. 1, pp. 1–12, 2022, doi: 10.51510/sinergipolmed.v3i1.699
  47. R. Rauf et al., Matahari Sebagai Energi Masa Depan. Yayasan Kita Menulis, 2023
  48. N. Manoj, U. Subramaniam, M. Mathew, A. Ajitha, and D. J. Almakhles, “Case Studies in Thermal Engineering Exergy analysis of thin-film solar PV module in ground-mount , floating and submerged installation methods,” Case Stud. Therm. Eng., vol. 21, no. May, p. 100686, 2020, doi: 10.1016/j.csite.2020.100686
  49. Z. Kaneesamkandi, M. J. Almalki, A. Sayeed, and Z. A. Haidar, “Passive Cooling of PV Modules Using Heat Pipe Thermosiphon with Acetone: Experimental and Theoretical Study,” Appl. Sci., vol. 13, no. 3, 2023, doi: 10.3390/app13031457
  50. Y. E. Ahmed, M. R. Maghami, J. Pasupuleti, S. H. Danook, and F. Basim Ismail, “Overview of Recent Solar Photovoltaic Cooling System Approach,” Technologies, vol. 12, no. 9, pp. 1–27, 2024, doi: 10.3390/technologies12090171
  51. J. Ariksa, A. S. S. Forestico, Y. Setiawan, S. Saparin, and E. S. Wijianti, “Pengaruh Pendinginan Panel Surya Terhadap Efisiensi Daya Keluaran,” Mach. J. Tek. Mesin, vol. 10, no. 1, pp. 36–40, 2024, doi: 10.33019/jm.v10i1.5055
  52. P. Harahap, “Pengaruh Temperatur Permukaan Panel Surya Terhadap Daya Yang Dihasilkan Dari Berbagai Jenis Sel Surya,” RELE (Rekayasa Elektr. dan Energi) J. Tek. Elektro, vol. 2, no. 2, pp. 73–80, 2020, doi: 10.30596/rele.v2i2.4420
  53. A. Govindasamy, Dhanusiya Kumar, “Experimental analysis of solar panel efficiency improvement with composite phase change materials,” Renew. Energy, vol. 212, no. agustus, pp. 175–184, 2023, doi: https://doi.org/10.1016/j.renene.2023.05.028
  54. R. Youssef, T. Kalogiannis, H. Behi, A. Pirooz, J. Van Mierlo, and M. Berecibar, “A comprehensive review of novel cooling techniques and heat transfer coolant mediums investigated for battery thermal management systems in electric vehicles,” Energy Reports, vol. 10, pp. 1041–1068, 2023, doi: 10.1016/j.egyr.2023.07.041
  55. M. Dida, S. Boughali, D. Bechki, and H. Bouguettaia, “Experimental investigation of a passive cooling system for photovoltaic modules efficiency improvement in hot and arid regions,” Energy Convers. Manag., vol. 243, no. September, p. 114328, 2021, doi: https://doi.org/10.1016/j.enconman.2021.114328
  56. I. Valiente-Blanco et al., “Efficiency Improvement of Photovoltaic Solar Modules by Cooling Using an Underground Heat Exchanger,” Sol. Energy, vol. 144, no. 6, pp. 1–11, 2022, doi: https://doi.org/10.1115/1.4055299
  57. K. Bilen and İ. Erdoğan, “Effects of cooling on performance of photovoltaic/thermal (PV/T) solar panels: A comprehensive review,” Sol. Energy, vol. 262, no. September, p. 111829, 2023, doi: https://doi.org/10.1016/j.solener.2023.111829
  58. A. R. Amelia et al., “Cooling on Photovoltaic Panel Using Forced Air Convection Induced by DC Fan,” Int. J. Electr. Comput. Eng., vol. 6, no. 2, p. 526, 2016, doi: 10.11591/ijece.v6i2.9118
  59. U. Sajjad, M. Amer, H. M. Ali, A. Dahiya, and N. Abbas, “Cost effective cooling of photovoltaic modules to improve efficiency,” Case Stud. Therm. Eng., vol. 14, no. March, p. 100420, 2019, doi: 10.1016/j.csite.2019.100420
  60. K. Mankani, H. Nasarullah, Chaudhry, and J. K. Calautit, “Optimization of an air-cooled heat sink for cooling of a solar photovoltaic panel: A computational study,” Energy Build., vol. 270, no. September, p. 112274, 2022, doi: https://doi.org/10.1016/j.enbuild.2022.112274Getrightsandcontent
  61. S. Anurag et al., “A study on the effects of forced air-cooling enhancements on a 150 W solar photovoltaic thermal collector for green cities,” Sustain. Energy Technol. Assessments, vol. 49, no. February, p. 101782, 2022, doi: https://doi.org/10.1016/j.seta.2021.101782
  62. A. A. Nazaar, “MENGGUNAKAN HEATSINK - FAN SEBAGAI,” 2022
  63. S. A. Zubeer and O. M. Ali, “Performance analysis and electrical production of photovoltaic modules using active cooling system and reflectors,” Ain Shams Eng. J., vol. 12, no. 2, pp. 2009–2016, 2021, doi: 10.1016/j.asej.2020.09.022
  64. Patil (Desai) Sujay S, Wagh M. M., and Shinde N. N., “A Review on Floating Solar Photovoltaic Power Plants,” Int. J. Sci. Eng. Res., vol. 8, no. 6, p. 6, 2017
  65. P. Ranjbaran, H. Yousefi, G. B. Gharehpetian, and F. R. Astaraei, “A review on floating photovoltaic (FPV)power generation units,” Renew. Sustain. Energy Rev., vol. 110, no. April 2018, pp. 332–347, 2019, doi: 10.1016/j.rser.2019.05.015
  66. H. D. M. R. Perera, “Designing of 3MW Floating Photovoltaic Power System and its Benefits over Other PV Technologies,” Int. J. Adv. Sci. Res. Eng., vol. 06, no. 04, pp. 37–48, 2020, doi: 10.31695/ijasre.2020.33782
  67. T. Thumma and S. R. Sheri, “Unsteady MHD Free Convection Flow past a Vertical Porous Plate Considering Radiation and Volume Fraction Effects in a Nanofluid,” Int. Adv. Res. J. Sci. Eng. Technol., vol. 2, no. 2, pp. 197–205, 2015, doi: 10.17148/IARJSET
  68. H. Pouran, M. Padilha Campos Lopes, H. Ziar, D. Alves Castelo Branco, and Y. Sheng, “Evaluating floating photovoltaics (FPVs) potential in providing clean energy and supporting agricultural growth in Vietnam,” Renew. Sustain. Energy Rev., vol. 169, pp. 1–4, 2022, doi: 10.1016/j.rser.2022.112925
  69. T. Zhang, Z. W. Yan, L. Xiao, H. D. Fu, G. Pei, and J. Ji, “Experimental, study and design sensitivity analysis of a heat pipe photovoltaic/thermal system,” Appl. Therm. Eng., vol. 162, no. January, 2019, doi: 10.1016/j.applthermaleng.2019.114318
  70. D. Vittorini and R. Cipollone, “Fin-cooled photovoltaic module modeling – Performances mapping and electric efficiency assessment under real operating conditions,” Energy, vol. 167, pp. 159–167, 2019, doi: 10.1016/j.energy.2018.11.001
  71. A. M. Elbreki, M. A. Alghoul, K. Sopian, and T. Hussein, “Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution,” Renew. Sustain. Energy Rev., vol. 69, no. July, pp. 961–1017, 2017, doi: 10.1016/j.rser.2016.09.054
  72. C. Babu and P. Ponnambalam, “The theoretical performance evaluation of hybrid PV-TEG system,” Energy Convers. Manag., vol. 173, no. July, pp. 450–460, 2018, doi: 10.1016/j.enconman.2018.07.104
  73. S. Praveenkumar et al., “Experimental Study on Performance Enhancement of a Photovoltaic Module Incorporated with CPU Heat Pipe—A 5E Analysis,” Sensors, vol. 22, no. 17, 2022, doi: 10.3390/s22176367
  74. N. A. S. Elminshawy, A. M. I. Mohamed, A. Osama, I. Amin, A. M. Bassam, and E. Oterkus, “Performance and potential of a novel floating photovoltaic system in Egyptian winter climate on calm water surface,” Int. J. Hydrogen Energy, vol. 47, no. 25, pp. 12798–12814, 2022, doi: https://doi.org/10.1016/j.ijhydene.2022.02.034
  75. R. Gad, H. Mahmoud, S. Ookawara, and H. Hassan, “Impact of PCM type on photocell performance using heat pipe-PCM cooling system: A numerical study,” J. Energy Syst., vol. 7, no. 1, pp. 67–88, 2023, doi: 10.30521/jes.1159281
  76. N. Gupta and G. N. Tiwari, “Parametric study to understand the effect of various passive cooling concepts on building integrated semitransparent photovoltaic thermal system,” Sol. Energy, vol. 180, no. March, pp. 391–400, 2019, doi: https://doi.org/10.1016/j.solener.2018.12.079
  77. M. Emam, A. Radwan, and M. Ahmed, “Chapter 2.15 - Comparative Study of Active and Passive Cooling Techniques for Concentrated Photovoltaic Systems,” Exergetic, Energ. Environ. Dimens., pp. 475–505, 2018, doi: https://doi.org/10.1016/B978-0-12-813734-5.00027-5
  78. B. Sutanto, Y. S. Indartono, A. T. Wijayanta, and H. Iacovides, “Enhancing the performance of floating photovoltaic system by using thermosiphon cooling method: Numerical and experimental analyses,” Int. J. Therm. Sci., vol. 180, no. October, p. 107727, 2022, doi: https://doi.org/10.1016/j.ijthermalsci.2022.107727Getrightsandcontent
  79. Y. H. Chen et al., “Eco-Friendly Transparent Silk Fibroin Radiative Cooling Film for Thermal Management of Optoelectronics,” Adv. Funct. Mater., vol. 33, no. 33, 2023, doi: 10.1002/adfm.202370201
  80. Y. Liu, Z. Liu, Z. Wang, W. Sun, and F. Kong, “Photovoltaic passive cooling via water vapor sorption-evaporation by hydrogel,” Appl. Therm. Eng., vol. 240, no. March, p. 122185, 2024, doi: https://doi.org/10.1016/j.applthermaleng.2023.122185
  81. A. Abdullah, F. Attulla, O. K. Ahmed, and S. Algburi, “Effect of Cooling Method on the Performance of PV/Trombe Wall: A Case Study,” SSRN Electron. J., pp. 1–17, 2022, doi: 10.2139/ssrn.3994435
  82. S. Ahmed, S. Li, Z. Li, G. Xiao, and T. Ma, “Enhanced radiative cooling of solar cells by integration with heat pipe,” Appl. Energy, vol. 308, no. February, p. 118363, 2022, doi: https://doi.org/10.1016/j.apenergy.2021.118363
  83. F. Bayrak, H. F. Oztop, and F. Selimefendigil, “Experimental study for the application of different cooling techniques in photovoltaic (PV) panels,” Energy Convers. Manag., vol. 212, no. May, p. 112789, 2020, doi: https://doi.org/10.1016/j.enconman.2020.112789
  84. A. Khanalizadeh, F. R. Astaraei, M. M. Heyhat, and M. A. V. Rad, “Experimental investigation of a PV/T system containing a TEG section between water-based heat exchanger and air-based heat sink,” Therm. Sci. Eng. Prog., vol. 42, no. July, p. 101909, 2023, doi: https://doi.org/10.1016/j.tsep.2023.101909
  85. R. P. Dewi, S. Rahmat, and H. Purnata, “Sistem Pendingin Panel Surya Otomatis Untuk,” vol. 14, no. 1, pp. 1–10, 2023
  86. G. Zhang, M. S. Misaran, M. Adzrie, and N. Adrian, “Research on the Passive Cooling System of Solar Photovoltaic Panel Based on Hybrid Solar Chimney and Ventilator Research on the Passive Cooling System of Solar Photovoltaic Panel Based on Hybrid Solar Chimney and Ventilator,” J. Phys. Conf. Ser., vol. 2655, pp. 1–12, 2023, doi: 10.1088/1742-6596/2655/1/012016
  87. R. Salehi, A. Jahanbakhshi, J. B. Ooi, A. Rohani, and M. R. Golzarian, “Study on the performance of solar cells cooled with heatsink and nanofluid added with aluminum nanoparticle,” Int. J. Thermofluids, vol. 20, no. August, p. 100445, 2023, doi: 10.1016/j.ijft.2023.100445
  88. A. H S, H. N M, M. N, A. K. Hegde, and K. V. Karanth, “Energy, exergy and environmental impact analysis of a jute cloth embedded Photovoltaic thermal cooling system wetted with floating solar fountain,” Results Eng., vol. 24, no. October, p. 103457, 2024, doi: 10.1016/j.rineng.2024.103457
  89. S. Nižetić, M. Jurčević, D. Čoko, and M. Arıcı, “A novel and effective passive cooling strategy for photovoltaic panel,” Renew. Sustain. Energy Rev., vol. 145, no. 8, p. 11164, 2021, doi: https://doi.org/10.1016/j.rser.2021.111164
  90. M. Lebbi et al., “Energy performance improvement of a new hybrid PV/T Bi-fluid system using active cooling and self-cleaning: Experimental study,” Appl. Therm. Eng., vol. 182, no. January, p. 116033, 2021, doi: https://doi.org/10.1016/j.applthermaleng.2020.116033
  91. S. Fakouriyan, R. Mokhtari, and R. Ghasempour, “Investigating the effect of employing a 24-hour radiative cooling system on the photovoltaic/thermal systems performance: A case-based research,” Energy Reports, vol. 11, no. March, pp. 3624–3640, 2024, doi: 10.1016/j.egyr.2024.02.030

Last update:

No citation recorded.

Last update: 2025-07-31 17:24:27

No citation recorded.