skip to main content

SISTEM DETEKSI KEBAKARAN BERBASIS VISI KOMPUTER DENGAN YOLOv11 TERINTEGRASI DENGAN TELEGRAM

*Nico Demeus Hasoloan Manurung orcid publons  -  Fakultas Teknik dan Informatika, Universitas 17 Agustus 1945 Jakarta, Indonesia
Rajes Khana  -  Program Studi Informatika, Universitas 17 Agustus 1945, Indonesia
Jemie Muliadi  -  Program Studi Teknik Elektro, Universitas 17 Agustus 1945, Indonesia
Muhammad Sobirin  -  Program Studi Teknik Elektro, Universitas 17 Agustus 1945, Indonesia
Dikirim: 31 Mei 2025; Diterbitkan: 6 Okt 2025.
Akses Terbuka Copyright (c) 2025 Transmisi: Jurnal Ilmiah Teknik Elektro under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Sari

Deteksi dini api menjadi penting dalam upaya mitigasi risiko kebakaran. Sistem deteksi tersebut dikembangkan dalam penelitian ini dengan menggunakan kamera dan algoritma YOLOv11, serta notifikasi real-time terintegrasi dengan Telegram. Pelatihan model melibatkan dataset citra nyata dan hasil augmentasi, serta dievaluasi menggunakan metrik precision, recall, dan mAP. Hasil pelatihan menunjukkan bahwa model mencapai precision, recall, dan mAP@0.5 serta mAP@0.5:0.95 lebih tinggi dari YOLO versi lainnya dengan peningkatan precision sebesar 7,06%, recall 4,02%, mAP@0.5 sebesar 1,42%, dan mAP@0.5:0.95 mencapai peningkatan tertinggi sebesar 25,77%. Tingkat confidence rata-rata dari sistem adalah 0,63 pada indoor dan 0,576 pada outdoor yang menunjukkan kehandalannya. Sistem juga mengirimkan notifikasi otomatis ke Telegram saat deteksi api terjadi, sehingga mempercepat respons user terhadap insiden kebakaran. Dapat disimpulkan bahwa sistem yang dirancang cocok untuk diterapkan sebagai sistem peringatan dini kebakaran berbasis visi komputer yang dapat diterapkan pada PC dan mudah diintegrasikan ke smartphone.

Fulltext View|Download
Kata Kunci: KECERDASAN BUATAN

Article Metrics:

  1. . S. M. Ibrahim, J. A. Muhammad, and K. Widodo, “Evaluasi Sistem Proteksi Kebakaran Aktif pada Gedung Administrasi Perusahan Listrik Surabaya,” 2025
  2. . E. Januari et al., “Nyak Syeckh Universitas Abulyatama Aceh Evaluation of Fire Evacuation Routes in the Bale,” no. 26, pp. 437–452, 2024
  3. . Pratama dkk., “Rancang Bangn Pendeteki Kebakaran Menggunakan Telegram Berbasis IOT,” J. Comput. Sci. …, no. 2, pp. 127–135, 2023, [Online]. Available: https://jurnal.ulb.ac.id/index.php/JCoInT/article/view/127-135%0Ahttps://jurnal.ulb.ac.id/index.php/JCoInT/article/view/127-135/3926
  4. . L. T. Ramos, E. Casas, C. Romero, F. Rivas-Echeverría, and E. Bendek, “A study of YOLO architectures for wildfire and smoke detection in ground and aerial imagery,” Results Eng., vol. 26, no. April, p. 104869, 2025, doi: 10.1016/j.rineng.2025.104869
  5. . L. Zhang, M. Wang, Y. Ding, and X. Bu, “MS-FRCNN: A Multi-Scale Faster RCNN Model for Small Target Forest Fire Detection,” Forests, vol. 14, no. 3, 2023, doi: 10.3390/f14030616
  6. . V. E. Sathishkumar, J. Cho, M. Subramanian, and O. S. Naren, “Forest fire and smoke detection using deep learning-based learning without forgetting,” Fire Ecol., vol. 19, no. 1, 2023, doi: 10.1186/s42408-022-00165-0
  7. . E. H. Alkhammash, “A Comparative Analysis of YOLOv9, YOLOv10, YOLOv11 for Smoke and Fire Detection,” Fire, vol. 8, no. 1, 2025, doi: 10.3390/fire8010026
  8. . H. Kwon, S. Choi, W. Woo, and H. Jung, “Evaluating Segmentation-Based Deep Learning Models for Real-Time Electric Vehicle Fire Detection,” Fire, vol. 8, no. 2, 2025, doi: 10.3390/fire8020066
  9. . Y. Tao, B. Li, P. Li, J. Qian, and L. Qi, “Improved Lightweight YOLOv11 Algorithm for Real-Time Forest Fire Detection,” pp. 1–18, 2025
  10. . E. H. Alkhammash, “Multi-Classification Using YOLOv11 and Hybrid YOLO11n-MobileNet Models: A Fire Classes Case Study,” Fire, vol. 8, no. 1, pp. 1–20, 2025, doi: 10.3390/fire8010017
  11. . Y. Huo et al., “A Small-Sample Target Detection Method for Transmission Line Hill Fires Based on Meta-Learning YOLOv11,” Energies, vol. 18, no. 6, pp. 1–14, 2025, doi: 10.3390/en18061511
  12. . C. Zhao, L. Zhao, K. Zhang, Y. Ren, H. Chen, and Y. Sheng, “Smoke and Fire-You Only Look Once: A Lightweight Deep Learning Model for Video Smoke and Flame Detection in Natural Scenes,” Fire, vol. 8, no. 3, pp. 1–16, 2025, doi: 10.3390/fire8030104
  13. . W. T. Sung, I. G. T. Isa, C. H. Tseng, and S. J. Hsiao, “Constructing a Lightweight Fire and Smoke Detection through the Improved GhostNet Architecture and Attention Module Mechanism,” IEEE Access, vol. PP, p. 1, 2025, doi: 10.1109/ACCESS.2025.3550539
  14. . T. Luan, S. Zhou, L. Liu, and W. Pan, “Tiny-Object Detection Based on Optimized YOLO-CSQ for Accurate Drone Detection in Wildfire Scenarios,” Drones, vol. 8, no. 9, p. 454, 2024, doi: 10.3390/drones8090454
  15. . S. N. Saydirasulovich, M. Mukhiddinov, O. Djuraev, A. Abdusalomov, and Y. I. Cho, “An Improved Wildfire Smoke Detection Based on YOLOv8 and UAV Images,” Sensors (Basel)., vol. 23, no. 20, 2023, doi: 10.3390/s23208374
  16. . F. Akhmedov, R. Nasimov, and A. Abdusalomov, “Dehazing Algorithm Integration with YOLO-v10 for Ship Fire Detection,” Fire, vol. 7, no. 9, pp. 1–19, 2024, doi: 10.3390/fire7090332
  17. . T. Zhang, F. Wang, W. Wang, Q. Zhao, W. Ning, and H. Wu, “Research on Fire Smoke Detection Algorithm Based on Improved YOLOv8,” IEEE Access, vol. 12, pp. 117354–117362, 2024, doi: 10.1109/ACCESS.2024.3448608
  18. . X. Geng, X. Han, X. Cao, Y. Su, and D. Shu, “YOLOV9-CBM: An improved fire detection algorithm based on YOLOV9,” IEEE Access, vol. XX, 2025, doi: 10.1109/ACCESS.2025.3534782
  19. . M. L. Hoang, “Smart Drone Surveillance System Based on AI and on IoT Communication in Case of Intrusion and Fire Accident,” Drones, vol. 7, no. 12, 2023, doi: 10.3390/drones7120694
  20. . S. H. Patel and K. Prajapati, “Advanced Forest Fire Detection Using YOLOv10 : A Deep Learning Approach,” vol. 3, pp. 4115–4125, 2024
  21. . A. Shees, M. S. Ansari, A. Varshney, M. N. Asghar, and N. Kanwal, “FireNet-v2: Improved Lightweight Fire Detection Model for Real-Time IoT Applications,” Procedia Comput. Sci., vol. 218, pp. 2233–2242, 2022, doi: 10.1016/j.procs.2023.01.199
  22. . M. Ainur Rohman and D. Arifianto, “Penerapan Metode Euclidean Probality dan Confusion Matrix dalam Diagnosa Penyakit Koi,” JurnalSmartTeknologi, vol. 2, no. 2, pp. 122–30, 2021, [Online]. Available: http://jurnal.unmuhjember.ac.id/index.php/JST
  23. . T. T. Huynh, H. T. Nguyen, and D. T. Phu, “Enhancing Fire Detection Performance Based on Fine-Tuned YOLOv10,” Comput. Mater. Contin., vol. 81, no. 2, pp. 2281–2298, 2024, doi: 10.32604/cmc.2024.057954

Last update:

No citation recorded.

Last update: 2025-11-08 00:36:11

No citation recorded.