skip to main content

SISTEM DETEKSI KEBAKARAN BERBASIS VISI KOMPUTER DENGAN YOLOv11 TERINTEGRASI DENGAN TELEGRAM

*NICO DEMEUS HASOLOAN MANURUNG orcid publons  -  FAKULTAS TEKNIK DAN INFORMATIKA, PROGRAM STUDI TEKNIK ELEKTRO, UNIVERSITAS 17 AGUSTUS 1945 JAKARTA, JAKARTA, INDONESIA, 14350, Indonesia
Dikirim: 31 Mei 2025; Diterbitkan: 6 Okt 2025.
Akses Terbuka Copyright (c) 2025 Transmisi: Jurnal Ilmiah Teknik Elektro under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Sari

Deteksi dini kebakaran merupakan aspek penting dalam upaya mitigasi risiko kebakaran, terutama di area dengan tingkat bahaya tinggi. Penelitian ini mengembangkan sistem deteksi kebakaran berbasis kamera menggunakan algoritma YOLOv11 yang terintegrasi dengan platform Telegram sebagai media notifikasi real-time. Model dilatih menggunakan dataset campuran yang mencakup citra nyata dan hasil augmentasi, dengan total 432 gambar, serta dievaluasi menggunakan metrik precision, recall, dan mAP. Hasil pelatihan menunjukkan bahwa model mencapai precision sebesar 0,793, recall 0,609, dan mAP@0.5 serta mAP@0.5:0.95 masing-masing sebesar 0,720. Sistem berhasil diuji dalam kondisi indoor dan outdoor dengan tingkat confidence rata-rata sebesar 0,576 dan 0,548. Selain itu, sistem mampu mengirimkan notifikasi otomatis ke Telegram saat deteksi api terjadi, sehingga meningkatkan respons waktu nyata terhadap insiden kebakaran. Perbandingan dengan YOLOv8, YOLOv9, dan YOLOv10 menunjukkan bahwa meskipun YOLOv11 belum melampaui YOLOv10 dari segi akurasi, integrasi dan efisiensinya membuatnya cocok diterapkan pada perangkat edge. Penelitian ini menyimpulkan bahwa sistem yang dirancang memiliki potensi tinggi untuk diterapkan sebagai sistem peringatan dini kebakaran berbasis visi komputer yang ringan, efisien, dan mudah diintegrasikan.

 

Fulltext
Kata Kunci: KECERDASAN BUATAN

Article Metrics:

  1. . S. M. Ibrahim, J. A. Muhammad, and K. Widodo, “Evaluasi Sistem Proteksi Kebakaran Aktif pada Gedung Administrasi Perusahan Listrik Surabaya,” 2025
  2. . E. Januari et al., “Nyak Syeckh Universitas Abulyatama Aceh Evaluation of Fire Evacuation Routes in the Bale,” no. 26, pp. 437–452, 2024
  3. . Pratama dkk., “Rancang Bangn Pendeteki Kebakaran Menggunakan Telegram Berbasis IOT,” J. Comput. Sci. …, no. 2, pp. 127–135, 2023, [Online]. Available: https://jurnal.ulb.ac.id/index.php/JCoInT/article/view/127-135%0Ahttps://jurnal.ulb.ac.id/index.php/JCoInT/article/view/127-135/3926
  4. . L. T. Ramos, E. Casas, C. Romero, F. Rivas-Echeverría, and E. Bendek, “A study of YOLO architectures for wildfire and smoke detection in ground and aerial imagery,” Results Eng., vol. 26, no. April, p. 104869, 2025, doi: 10.1016/j.rineng.2025.104869
  5. . L. Zhang, M. Wang, Y. Ding, and X. Bu, “MS-FRCNN: A Multi-Scale Faster RCNN Model for Small Target Forest Fire Detection,” Forests, vol. 14, no. 3, 2023, doi: 10.3390/f14030616
  6. . V. E. Sathishkumar, J. Cho, M. Subramanian, and O. S. Naren, “Forest fire and smoke detection using deep learning-based learning without forgetting,” Fire Ecol., vol. 19, no. 1, 2023, doi: 10.1186/s42408-022-00165-0
  7. . E. H. Alkhammash, “A Comparative Analysis of YOLOv9, YOLOv10, YOLOv11 for Smoke and Fire Detection,” Fire, vol. 8, no. 1, 2025, doi: 10.3390/fire8010026
  8. . H. Kwon, S. Choi, W. Woo, and H. Jung, “Evaluating Segmentation-Based Deep Learning Models for Real-Time Electric Vehicle Fire Detection,” Fire, vol. 8, no. 2, 2025, doi: 10.3390/fire8020066
  9. . Y. Tao, B. Li, P. Li, J. Qian, and L. Qi, “Improved Lightweight YOLOv11 Algorithm for Real-Time Forest Fire Detection,” pp. 1–18, 2025
  10. . E. H. Alkhammash, “Multi-Classification Using YOLOv11 and Hybrid YOLO11n-MobileNet Models: A Fire Classes Case Study,” Fire, vol. 8, no. 1, pp. 1–20, 2025, doi: 10.3390/fire8010017
  11. . Y. Huo et al., “A Small-Sample Target Detection Method for Transmission Line Hill Fires Based on Meta-Learning YOLOv11,” Energies, vol. 18, no. 6, pp. 1–14, 2025, doi: 10.3390/en18061511
  12. . C. Zhao, L. Zhao, K. Zhang, Y. Ren, H. Chen, and Y. Sheng, “Smoke and Fire-You Only Look Once: A Lightweight Deep Learning Model for Video Smoke and Flame Detection in Natural Scenes,” Fire, vol. 8, no. 3, pp. 1–16, 2025, doi: 10.3390/fire8030104
  13. . W. T. Sung, I. G. T. Isa, C. H. Tseng, and S. J. Hsiao, “Constructing a Lightweight Fire and Smoke Detection through the Improved GhostNet Architecture and Attention Module Mechanism,” IEEE Access, vol. PP, p. 1, 2025, doi: 10.1109/ACCESS.2025.3550539
  14. . T. Luan, S. Zhou, L. Liu, and W. Pan, “Tiny-Object Detection Based on Optimized YOLO-CSQ for Accurate Drone Detection in Wildfire Scenarios,” Drones, vol. 8, no. 9, p. 454, 2024, doi: 10.3390/drones8090454
  15. . S. N. Saydirasulovich, M. Mukhiddinov, O. Djuraev, A. Abdusalomov, and Y. I. Cho, “An Improved Wildfire Smoke Detection Based on YOLOv8 and UAV Images,” Sensors (Basel)., vol. 23, no. 20, 2023, doi: 10.3390/s23208374
  16. . F. Akhmedov, R. Nasimov, and A. Abdusalomov, “Dehazing Algorithm Integration with YOLO-v10 for Ship Fire Detection,” Fire, vol. 7, no. 9, pp. 1–19, 2024, doi: 10.3390/fire7090332
  17. . T. Zhang, F. Wang, W. Wang, Q. Zhao, W. Ning, and H. Wu, “Research on Fire Smoke Detection Algorithm Based on Improved YOLOv8,” IEEE Access, vol. 12, pp. 117354–117362, 2024, doi: 10.1109/ACCESS.2024.3448608
  18. . X. Geng, X. Han, X. Cao, Y. Su, and D. Shu, “YOLOV9-CBM: An improved fire detection algorithm based on YOLOV9,” IEEE Access, vol. XX, 2025, doi: 10.1109/ACCESS.2025.3534782
  19. . M. L. Hoang, “Smart Drone Surveillance System Based on AI and on IoT Communication in Case of Intrusion and Fire Accident,” Drones, vol. 7, no. 12, 2023, doi: 10.3390/drones7120694
  20. . S. H. Patel and K. Prajapati, “Advanced Forest Fire Detection Using YOLOv10 : A Deep Learning Approach,” vol. 3, pp. 4115–4125, 2024
  21. . A. Shees, M. S. Ansari, A. Varshney, M. N. Asghar, and N. Kanwal, “FireNet-v2: Improved Lightweight Fire Detection Model for Real-Time IoT Applications,” Procedia Comput. Sci., vol. 218, pp. 2233–2242, 2022, doi: 10.1016/j.procs.2023.01.199
  22. . M. Ainur Rohman and D. Arifianto, “Penerapan Metode Euclidean Probality dan Confusion Matrix dalam Diagnosa Penyakit Koi,” JurnalSmartTeknologi, vol. 2, no. 2, pp. 122–30, 2021, [Online]. Available: http://jurnal.unmuhjember.ac.id/index.php/JST
  23. . T. T. Huynh, H. T. Nguyen, and D. T. Phu, “Enhancing Fire Detection Performance Based on Fine-Tuned YOLOv10,” Comput. Mater. Contin., vol. 81, no. 2, pp. 2281–2298, 2024, doi: 10.32604/cmc.2024.057954

Last update:

No citation recorded.

Last update: 2025-10-09 02:46:10

No citation recorded.